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Abstract

This paper provides a nonparametric test for the commonly-used structure, the homo-

geneity and stability, on the parameters in panels. We first get the augmented residuals

by estimating the model under the null hypothesis of homogeneity and stability, then run

auxiliary time series regressions of residuals on the regressors with time-varying coefficients

via sieve methods. The test statistic is constructed by averaging the squared fitted val-

ues, which is close to zero under the null and deviates from zero under the alternative.

We show that the test statistic, after being appropriately standardized, is asymptotically

normally distributed under the null and a sequence of Pitman local alternatives as both

cross-sectional and time dimensions tend to infinity. A bootstrap procedure is proposed to

improve the finite sample performance of our test. Monte Carlo simulations indicate that

our test performs reasonably well in finite samples. We apply the test to study the Environ-

mental Kuznets Curve in U.S. and reject the homogeneity and stablility of the coefficients

for all states. In addition, we extend the procedure to test other structures such as the

homogeneity of time-varying coefficients or the stability of heterogeneous coefficients.
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1 Introduction

The relationship between economic variables usually changes slowly over a long time span,

which is possibly influenced by preference change, technological progress, or some other driving

forces such as institutional transformation, economic transition, policy switch, etc., see Chen

and Hong (2012). For this reason, mainly motivated by time-varying or functional coefficient

models in the literature of semiparametric regression, numerous studies have been devoted to

capture the important feature of time-varying coefficients (TVC) or smoothing time trends in

the panel data framework. For example, Li et al. (2011) propose a local linear dummy variable

approach for estimating panel models with TVC, which is an extension of Cai et al.’s (2000)

and Cai’s (2007) TVC time series models; Robinson (2012) studies the kernel estimation of

nonparametric trending panel data models with cross-sectional dependence; Chen et al. (2012)

include exogenous regressors in Robinson’s (2012) nonparametric panel trending model with a

partially linear structure; Atak et al. (2011) adopt a semiparametric unbalanced panel data

model with smoothing time trends to study the climate change in the United Kingdom. For

other related works on time-varying or functional coefficients panel data models, see Zhao et

al. (2016), Gao et al. (2018), among many others.

Almost all the aforementioned papers assume that all cross-sectional units in panels share

the same vector of constant coefficients, and that the heterogeneity among individual units is

fully captured by the additive unobservable individuals fixed effects. Even if the homogene-

ity assumption greatly reduces the dimension of parameter space, and significantly simplifies

the processes of estimation and inference, however, this assumption may be inappropriate in

practice and the restricted estimator with homogeneity may cause a biased estimator for the

cross-sectional simple “average” or “mean” of slopes, and further lead to misleading conclusions

(e.g., Hsiao and Tahmiscioglu (1997) and Lee et al. (1997)). A conservative way is to allow

individual-specific or group-specific slope coefficients. For example, Ma et al. (2018) consider

testing empirical asset pricing models with individual-specific time-varying factor loadings and

intercepts; Su et al. (2018) propose a heterogeneous time-varying panel data model with a

latent group structure and apply the classified-Lasso of Su et al. (2016) to estimate the TVCs

and group memberships jointly; Liu et al. (2018) study a class of time-varying panel data

models with individual-specific regression coefficients in the presence of common factors, and

propose a unified semiparametric profile method to estimate the TVCs and the factor loadings

simultaneously.
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Since the specification of stability and/or homogeneity of coefficients plays a critical role

in obtaining consistent estimation and valid statistical inference for panel data models, it is

necessary and prudent for researchers to carry out certain specification or diagnostic tests

before embarking on the estimation with such restrictions. However, there are only several

specification tests for the heterogenous time-varying panel data models. For example, Zhang

et al. (2012) and Hidalgo and Lee (2014) propose nonparametric tests for the common time

trends in a semiparametric panel data model with homogeneous linear slopes; Chen and Huang

(2018) suggest a nonparametric Wald-type test for the stability of coefficients while assuming

that all the coefficients are homogenous among individuals; Gao et al. (2018) provide a test

for homogeneity of constant slopes while allowing individual-specific and nonparametric time

trends; Ma et al. (2018) test whether all the individual-specific time trends are equal to zero

jointly for the asset pricing model with heterogenous time-varying factor loadings.

Yet there is no available test for the joint structure of homogeneity and stability on the

coefficients for panel data models. The joint structure implies that all the coefficients in panels

are fixed constant along both the time series and cross-sectional dimensions, i.e., the usual

homogeneous linear panel data model, which is the simplest and most widely-used specification

in empirical studies. To fill the gap, in this paper, we provide a nonparametric test for the

joint structure on the heterogeneous TVC panel data model. We first estimate the model

under the null hypothesis and obtain the augmented residuals, which consistently estimate the

sums of fixed effect and the disturbance errors if the null is true. Then we run auxiliary time

series regressions of the augmented residuals on regressors and constant with TVCs via the

sieve method and propose a testing statistic by averaging all the squared fitted values across

individuals and time periods. By construction, the testing statistic is close to 0 under the

null and deviates from 0 under the alternative. We show that the test statistic, after being

appropriately standardized, is asymptotically normally distributed under both the null and

a sequence of Pitman local alternatives when both cross-sectional and time dimensions tend

to infinity. A bootstrap procedure is proposed to improve the finite sample performance of

the test. Extensions of the proposed testing to other commonly-used specifications such as the

homogeneity of TVCs and the stability of heterogenous coefficients in panels are also discussed.

Monte Carlo simulations indicate that the proposed test performs reasonably well in finite

samples in a variety setup of data generating processes. We apply our test to Environmental

Kuznets Curve estimation and reject the assumption of homogeneous and stable coefficients in
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the model.

The rest of the paper is organized as follows. In Section 2, we introduce the basic framework

including the model, the hypothesis of interest, and the proposed test based on the estimation

under the null hypothesis. The large sample theory for the proposed test and extension of the

test for models with homogeneous TVC or stable heterogeneous coefficients are provided in

Section 3 and Section 4, respectively. Section 5 conducts a set of Monte Carlo simulations to

investigate the finite sample performance of our test. We apply our proposed test to study the

Environmental Kuznets Curve (EKC) in US in Section 6. Section 7 concludes. The proofs for

main theorems and the lemmas, additional simulation results are contained in appendix.

Notation. We use λmin (A), λmax (A) and tr(A) to denote the smallest eigenvalue, largest

eigenvalue and the trace of a matrix A, respectively. For any n ×m matrix A, let A′ be its

transpose, ‖A‖ ≡
√

tr(A′A) its Frobenius norm, PA = A (A′A)−1A′ and MA = Im − PA,

where Im is an m×m identity matrix. We use p.s.d. (p.d.) for the abbreviation for “positive

semi-definite (positive definite)”. The symbols →p and →d denote convergence in probability

and in distribution, respectively. (N,T )→∞ signifies that N and T tend to infinity jointly.

2 Basic Framework

In this section, we first introduce the heterogeneous TVC panel data model and the main

hypothesis of interest, then discuss the motivation of our testing approach with the restricted

estimation under the null hypothesis, and finally propose a testing statistic based on auxiliary

time series regressions with a TVC structure.

2.1 The Model and Hypothesis

We consider the following heterogeneous TVC panel data models with fixed effects and time

trend

Yit = X ′itβit + fit + αi + εit, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where Yit is a scalar, Xit is a d-vector of time-varying exogenous explanatory variables which

may include some common regressors such as macroeconomic variables or financial factors,

αi represents the individual-specific unobservable effect which may be correlated with the

regressors Xit. βit is a vector of deterministic time-varying coefficients and fit is the time trend
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for the ith individual. For the idiosyncratic error εit, we follow Su et al. (2018) and assume

εit = σitεit with σ2
it = σ2

i (Xit, t/T ) , (2.2)

where εit has zero mean and variance one conditional on Xit.

Following the literature of nonparametric time-varying regressions (e.g. Cai (2007), Robin-

son (1989, 1991, 2012), Li et al. (2011), Zhang et al. (2012), Chen et al. (2012), Chen and

Huang (2018)), we assume that for each i both slope βit and trend fit change slowly over a

long time span as follows

βit = βi (τt) and fit = fi (τt) for t = 1, . . . , T, (2.3)

where τt ≡ t/T is the time regressor, and βi (·) : [0, 1] → Rd and fi (·) : [0, 1] → R are all

unknown smooth functions. To identify fi (·) and αi in (2.1), we impose that1∫ 1

0
fi (τ) dτ = 0 for i = 1, . . . , N. (2.4)

Denote the component in Yit explained by regressors (Xit) and 1 with TVCs as2

git ≡ gi (Xit, τt) ≡ X ′itβit + fit. (2.5)

The models specified in (2.1) and (2.3) are quite general and include various panel data

models in the literature as special cases when different structures are imposed on the unknown

functions βi (·)’s and fi (·)’s:

1. If βi (·) = β and fi (·) = 0 for all i’s, then model (2.1) reduces to the usual homogeneous

linear panel data model with fixed effects in standard textbooks (see Baltagi (2012), Hsiao

(2014) and Pesaran (2015)):

Yit = X ′itβ + αi + εit; (2.6)

2. when βi (·) = βi and fi (·) = 0 for each i, then model (2.1) becomes the heterogeneous

linear panel data model with fixed effects (see Hsiao (2014), Pesaran (2015) and Hsiao

and Pesaran (2008)):

Yit = X ′itβi + αi + εit; (2.7)
1Alternatively, we can impose that fi (c∗) = 0 for i = 1, . . . , N and c∗ ∈ [0, 1].
2Clearly, the setup in (2.1) and (2.3) can be easily generalized to allow for a mixture structure such as

Yit = X ′1,itβ1,it +X ′2,itβ2,i +X ′3,itβ3,t +X ′4,itβ4 + αi + εit,

where the time trends (fit or ft) can be aborbed in the first or third components. To simply the illustruation,

we focus on the model with a fully heterogneous TVCs.
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3. when βi (·) = β (·) and fi (·) = f (·) for i = 1, . . . , N, then model (2.1) is the panel data

model with homogeneous TVCs studied by Chen and Huang (2018), Chen et al. (2012),

Silvapulle et al. (2016), and Li et al. (2011):

Yit = f (τt) +X ′itβ (τt) + αi + εit; (2.8)

4. when βi (·) = βi or β and fi (·) 6= 0 or fi (·) = f (·) 6= 0, then model (2.1) becomes the

following homogeneous or heterogeneous linear panel data models with homogeneous or

heterogeneous nonparametric time trends:

Yit = f (τt) +X ′itβ + αi + εit, (2.9)

Yit = fi (τt) +X ′itβ + αi + εit, (2.10)

Yit = f (τt) +X ′itβi + αi + εit, (2.11)

Yit = fi (τt) +X ′itβi + αi + εit, (2.12)

where models (2.9)-(2.12) have been studied by Chen et al. (2012), Zhang et al. (2012),

and Atak et al. (2012), Gao et al. (2018), respectively.

5. when there is no regressors (βi (·) = 0 for all i = 1, . . . , N), then model (2.1) becomes the

nonparametric trending panel data models:

Yit = f (τt) + αi + εit, (2.13)

Yit = fi (τt) + αi + εit, (2.14)

where the homogeneous trending model (2.13) has been studied by Robinson (2012) and

model (2.14) allows for heterogeneous trending behavior.

6. when there exists an unknown group structure for coefficients βit’s (i.e., βit = βjt when

i and j lie in the same group), model (2.1) becomes the heterogeneous linear panel data

model with time-invariant coefficients in Su et al. (2016) or the heterogeneous panel data

model with slowly varying coefficients in Su et al. (2018).

In this paper, we are interested in the joint test of homogeneity and stability of parameters

in model (2.1). The null hypothesis is

H0 : (βit, fit) = (β0, 0) for some β0 ∈ Rd and all i’s and t’s, (2.15)
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against the alternative hypothesis

H1 : (βit, fit) 6= (βjs, fjs) for some (i, t) 6= (j, s) . (2.16)

When the null hypothesis holds, all the individuals share the same time-invariant slopes for

regressors Xit and do not have time trends. Then model (2.1) under H0 becomes the usual

homogeneous linear panel data model with fixed effects. We can estimate the model either by

the usual fixed-effect (FE) estimator or first-difference (FD) estimator.3

For the above hypothesis testing problem, one can construct testing statistics in the spirit

of LR, Wald or LM tests. In this paper, we propose a nonparametric test for the structure in

(2.15) based on the estimation under the null hypothesis for several reasons: first, the restricted

estimation under H0 is much simpler than the estimation of the model without restriction;

second, models with restrictions on parameters (homogeneity across individuals and stability

along time) are preferred in empirical studies and our proposed test can be seen as a diagnostic

test after the simple and popular model is fitted; lastly, the testing strategy provides a unified

approach to testing other structures on parameters in panel data models such as homogeneity,

stability or group pattern, and so on.

2.2 Estimation under the nulls and the test statistic

Since our test is based on the estimation under the null hypothesis, we introduce the estimators

first. Under H0, the model (2.1) reduces to

Yit = X ′itβ0 + αi + εit. (2.17)

We can estimate β0 either by FE or FD estimator when Xit are strictly exogenous. For

illustration purposes, we adopt the following FE estimator

β̂FE =

(
N∑
i=1

X ′iMιTXi

)−1 N∑
i=1

X ′iMιT Yi, (2.18)

where MιT = IT − ιT ι
′
T /T , ιT is a T × 1 vector of ones, Xi = (Xi1, . . . , XiT )′ and Yi =

(Yi1, . . . , YiT )′. Then git in (2.5) is estimated by ĝit = X ′itβ̂FE . Denote

βP =

[
N∑
i=1

E
(
X ′iMιTXi

)]−1 N∑
i=1

E
(
X ′iMιT Yi

)
,

3When Xit include the lags of dependent variable or endogeneous variable, we can estimate the model by

GMM or IV approach, the proposed test statistics to be discussed will still be valid with extra assumptions and

more labrous derivation.
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as the nonrandom version of β̂FE and gP,it = X ′itβP .4

Let ûit ≡ Yit − ĝit be the augmented residual and ηit = ĝit − gP,it the “estimation error”

when one use ĝit to estimate gP,it. Then we can decompose ûit as follows

ûit = Yit − ĝit = (git − gP,it) + (gP,it − ĝit) + (αi + εit) ≡ g†it − ηit + uit, say, (2.19)

where uit = αi + εit is the generalized error.

For (2.19), we note that, first, the second component ηit (= ĝit − gP,it) is asymptotically

negligible either under the null or alternative hypotheses. Second, the first component g†it
(= git − gP,it) can be rewritten as

g†it = fi (τt) +X ′it [βi (τt)− βP ] ≡ f †i (τt) +X ′itβ
†
i (τt) .

Clearly, βi (·) = β0 = βP and f †i (·) = 0 for all i’s under H0, and then we have g†it = 0 for all

(i, t)’s. However, βit and fit have variation either across i or over t under H1, and then we in

general have β†i (τt) 6= 0 and f †i (τt) 6= 0. It follows that g†it’s are generally away from 0 when

H1 holds.

The opposite behavior of g†it under H0 and H1 motivates us to consider the following test

statistic based on the weighted sum of squared g†it:

Γ0
NT =

1
NT

N∑
i=1

T∑
t=1

(
g†it

)2
wit, (2.20)

where wit ≡ wi (τt) and wi (·)’s are some user-specified non-negative weighting functions. By

construction, Γ0
NT ≥ 0. Clearly, Γ0

NT equals 0 under H0 but is greater than 0 under H1.

However, in practice, Γ0
NT is infeasible because {g†it, i = 1, . . . , T , i = 1 . . . , N} are unknown to

the researchers. In the following section, we propose the sieve estimation of g†it.

2.3 Auxiliary time series regressions with TVCs

As mentioned above, to obtain a feasible testing statistic, we need to estimate g†it. Noting that

ûit is a consistent estimator for the composite error uit under H0 and for g†it + uit under H1,

4When the FD estimator is used, we have β̂FD =
(∑N

i=1

∑T
t=2 ∆Xit∆X

′
it

)−1∑N
i=1

∑T
t=2 ∆Xit∆Yit, and

βP =
(∑N

i=1

∑T
t=2 E (∆Xit∆X

′
it)
)−1∑N

i=1

∑T
t=2 E (∆Xit∆Yit) , where ∆Xit = Xit −Xi,t−1 and ∆Yit = Yit −

Yi,t−1.
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we can estimate
{
g†it

}T
t=1

based on {ûit}Tt=1 by the auxiliary time series regression of ûit on Xit

and 1 with TVCs. For each i, we run an auxiliary time series regression with TVCs:5

ûit = f †i (τt) +X ′itβ
†
i (τt) + αi + ε†it, t = 1, . . . , T, (2.21)

where ε†it ≡ εit − ηit. Noting that f †i (·) : [0, 1] → R and β†i (·) : [0, 1] → Rd are all unknown

functions, which can be estimated either by the kernel method (e.g., Li et al. (2011), Chen and

Huang (2018)) or the sieve method (e.g., Dong and Linton (2018), Su and Zhang (2016), Zhang

and Zhou (2018)). In this paper, we focus on the sieve estimation of the unknown functions in

(2.21).

Let L2 [0, 1] =
{
u (τ) :

∫ 1
0 u

2 (τ) dτ <∞
}

, in which 〈u1, u2〉 =
∫ 1

0 u1 (τ)u2 (τ) dτ is the inner

product and the induced norm is ‖u‖ = 〈u, u〉1/2. Following Dong and Linton (2018), we choose

cosine functions as basis functions.6 Let B0 (τ) = 1, and Bj (τ) =
√

2 cos(jπτ) for j ≥ 1. Then

{Bj (τ)}∞j=1 forms an orthonormal basis in the Hilbert space L2 [0, 1] such that 〈Bi, Bj〉 = δij ,

where δij is the Kronecker delta. For any unknown continuous function u (τ) ∈ L2 [0, 1], we

obtain

u (τ) =
∞∑
j=0

πu,jBj (τ) , where πu,j ≡ 〈u,Bj〉 .

Suppose that for each i, β†il (·) ∈ L
2 [0, 1] for l = 1, . . . , d and f †i (·) ∈ L2 [0, 1]. Let BK (·) =

(B0 (·) , B1 (·) , . . . , BK−1 (·))′ and BK
−1 (·) = (B1 (·) , . . . , BK−1 (·))′ be the sequences of basis

functions to approximate unknown functions β†il (·) (l = 1, . . . , d) and f †i (·), respectively.7

Then for each i, we obtain8

β†il (·) =
∞∑
j=0

ϑβ,il,jBj (·) = ϑ′β,ilB
K (·) + r

(K)

β†il
(·) , l = 1, . . . , d (2.22)

f †i (·) =
∞∑
j=1

ϑf,i,jBj (·) = ϑ′f,iB
K
−1 (·) + r

(K)

f†i
(·) , (2.23)

5In testing the stability of homogeneous time-varying coefficients, the pooled estimation is more efficient since

f†i = f†j and β†i = β†j for all i 6= j.
6As mentioned in Dong and Linton (2018), the cosine basis functions can be replaced by any other orthonormal

basis in Hilbert space. However, the use of specific basis other than some general ones simplifies the assumptions

on basis functions and leads to simpler calculation.
7Noting that the constant term is left out in the approximation of f (·) to impose the identification restriction∫ 1

0
f (τ) dτ = 0 automatically.
8We can let the number of basis functions vary across different functions f∗i (·) and β∗il (·), i = 1, ..., N and

l = 1, ..., d. For simplicity, we adopt the same number of basis functions K in the sieve approximation of different

unknown functions.
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where ϑβ,il,j =
〈
β†il, Bj

〉
for any integer j ≥ 0, and ϑf,i,j =

〈
f †i , Bj

〉
for any integer j ≥ 1,

ϑβ,il = (ϑβ,il,0, . . . , ϑβ,il,K−1)′ and ϑf,i = (ϑβ,il,1, . . . , ϑβ,il,K−1)′, r(K)

β†il
(·) =

∑∞
j=K ϑβ,il,jBj (·)

and r
(K)

f†i
(·) =

∑∞
j=K ϑf,i,jBj (·). By Assumption 3 in Newey (1997), supτ∈[0,1]

∣∣∣∣r(K)

β†il
(τ)
∣∣∣∣ =

O (K−κ) and supτ∈[0,1]

∣∣∣∣r(K)

f†i
(·)
∣∣∣∣ = O (K−κ) as K → ∞ when β†il (·) and f †i (·) have κth con-

tinuous derivatives. Then we approximate β†il (·) by ϑ′β,ilB
K (·), and f †i (·) by ϑ′f,iB

K
−1 (·). Let

Bt ≡ BK (τt) and B−1,t ≡ BK
−1 (τt), where the dependence on K is suppressed to simplify the

notation. Using the approximations in (2.22)-(2.23) yields

g†it = X ′itβ
†
it + f †it ≈

d∑
l=1

Xit,lB
′
tϑβ,il +B′−1,tϑf,i = Z ′itϑi,

where ϑi ≡ (ϑ′f,i,vec(ϑβ,i)′)′, ϑβ,i = (ϑβ,i1, . . . , ϑβ,id) and Zit ≡ (B−1,t, (Xit ⊗Bt)′)′ with ⊗
being the Kronecker product. As a result, the linearized time series regression model with

sieve approximation is given by

ûit = Z ′itϑi + αi + vit, t = 1, . . . , T, (2.24)

where vit = εit − ηit + r†it, and r†it ≡ g†it − Z ′itϑi =
∑d

l=1 r
(K)

β†il
(τt)Xit,l + r

(K)

f†i
(τt) is the sieve

approximation error of g†it. Rewrite the model (2.24) in vector form

ûi = Ziϑi + ιTαi + vi, (2.25)

where ûi = (ûi1, . . . , ûiT )′, Zi = (Z ′i1, . . . , Z
′
iT )′, and vi = (vi1, . . . , viT )′. The usual OLS

estimator for ϑi and the corresponding estimator for g†it are respectively given by

ϑ̂i =
(
Z ′iMιTZi

)−1
Z ′iMιT ûi and ĝ†it = Z ′itϑ̂i. (2.26)

Based on the sieve estimators ĝ†it, we can construct a feasible version of Γ0
NT as follows

ΓNT =
1
NT

N∑
i=1

T∑
t=1

(
ĝ†it

)2
wit. (2.27)

Under certain regular conditions, we show later that after being appropriately centered and

scaled, ΓNT follows a standard normal distribution asymptotically under the null hypothesis.

3 Asymptotic theory

In this section, we study the large sample properties for the above test statistics.
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3.1 Assumptions

In order to study the asymptotic properties for ΓNT under the null hypothesis, we make the

following assumptions.

Assumption 1. (i) εit in (2.2) is independent of Xjs for any (i, t) and (j, s), E (εit) = 0 and

Var(εit) = 1;

(ii) {(Xi, εi)}Ni=1 are independent across i, whereXi = (Xi1, . . . , XiT )′ and εi = (εi1, . . . , εiT )′ ;

(iii) For each i, {(Xit, εit)}Tt=1 is strong mixing with mixing coefficients αi(l) satisfying

α(l) = max1≤i≤N {αi(l)} ≤ Cαρl for some Cα <∞ and ρ ∈ [0, 1);

(iv) (εit,Ft) is a martingale difference sequence (MDS) such that E(εit|Ft−1) = 0, where

Ft−1 is the σ-field generated by {εjs, j = 1, . . . , N, s = 1, . . . , t− 1} ;

(v) maxi,tE|εit|8+8η < ∞, maxi,tE ‖Xit‖8+8η < ∞, and maxi,tEσ4
it < ∞ for some η > 0,

where maxi,t denotes max1≤i≤N max1≤t≤T ;

(vi) Var(Xit) = Ωi (t/T ), where Ωi (·) is a d × d matrix of bounded functions defined on

[0, 1]. There exist some positive constants cxx and c̄xx such that

0 < cxx ≤ min
1≤i≤N

inf
τ∈[0,1]

[λmin (Ωi (τ))] ≤ max
1≤i≤N

sup
τ∈[0,1]

[λmax (Ωi (τ))] ≤ c̄xx <∞;

(vii) Let X̃(σ)
it ≡ (1, X ′it)

′ σit where σ2
it = σ2

i (Xit, t/T ) and Var(X̃(σ)
it ) = Ω(σ)

i (t/T ), where

Ω(σ)
i (·) is a (d+ 1) × (d+ 1) matrix of bounded functions defined on [0, 1]. There exist some

positive constants c(σ)
xx and c̄

(σ)
xx such that

0 < c(σ)
xx ≤ min

1≤i≤N
inf

τ∈[0,1]
[λmin(Ω(σ)

i (τ))] ≤ max
1≤i≤N

sup
τ∈[0,1]

[λmax(Ω(σ)
i (τ))] ≤ c̄(σ)

xx <∞.

Assumption 2. As (N,T )→∞, K →∞, K2/T → 0, NK/T 2 → 0, andN2T−3−4η ln (N)(4+4η)ν0

→ 0 for some η > 0 and ν0 > 1.

Several remarks can be made for the above assumptions. For Assumption 1, 1(i) requires

the independence of regressors {Xit} and {εit}, which is also used in Robinson (2015) and Su

et al. (2018); 1(ii) imposes cross-sectional independence in the regressors and errors, which can

be relaxed to allow for weak dependence as Chen et al. (2012) or Robinson (2015) with much

complicated arguments in the proof; 1(iii) assumes that {(Xit, εit), t = 1, . . . , T} are strong

mixing with a geometric decay rate, which can be satisfied by many well-known linear pro-

cesses such as ARMA processes and nonlinear processes; 1(iv) imposes a martingale difference

structure on εit with filtrations {Ft}Tt=1, which is also used in Chen and Huang (2018); some
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moments conditions on εit, Xit and σit are given in 1(v); We assume the variance of Xit and

X̃
(σ)
it are both time-varying in 1(vi)-(vii), and their eigenvalues are both bounded and bounded

away from 0. Assumption 2 provides the rate conditions on sample size (N,T ) and the number

of sieve basis terms K, and it can be easily satisfied if T/N converges to a nonzero constant as

(N,T )→∞.

3.2 Asymptotic Distribution

We first introduce some notations. Let Qż,i = T−1Z ′iMιTZi = Ż ′iŻi/T with Żi = MιTZi and

Qw,i = T−1Z ′iWiZi with Wi = diag(wi1, . . . , wiT ). We define a T × T matrix

Ki ≡MιTZiQ
−1
ż,iQw,iQ

−1
ż,iZ

′
iMιT = ŻiQ

−1
ż,iQw,iQ

−1
ż,i Ż

′
i,

and let Ki,ts denote its (t, s)-th element. Then denote the asymptotic bias and variance terms

of ΓNT as

BNT =
1√
NT

N∑
i=1

T∑
t=1

Ki,ttσ2
it and VNT =

2
NT 2

N∑
i=1

∑
1≤t6=s≤T

K2
i,tsσ

2
itσ

2
is, (3.1)

respectively. The standardized testing statistic is given by

JNT =
N1/2TΓNT − BNT√

VNT
. (3.2)

Under certain regularity conditions, we can show that JNT follows a standard normal dis-

tribution asymptotically under H0. However, the testing statistic JNT is infeasible because

BNT and VNT are both unknown. We can estimate BNT and VNT using their corresponding

sample analogs

B̂NT =
1√
NT

N∑
i=1

T∑
t=1

Ki,ttε̂2
r,it and V̂NT =

2
NT 2

N∑
i=1

∑
1≤s 6=t≤T

K2
i,tsε̂

2
r,itε̂

2
r,is, (3.3)

respectively, where ε̂r,it = ûit − ûi and ûi = T−1
∑T

t=1 ûit.
9 Consequently, a feasible testing

statistic for JNT is

ĴNT =
N1/2TΓNT − B̂NT√

V̂NT

. (3.4)

The following theorem gives the asymptotic distribution of ĴNT under the null hypothesis.

9Alternatively, we can choose ε̂r,it = ûit − ĝ†it − (ûi − ĝ
†
i ), where ĝ

†
i = T−1∑T

t=1 ĝ
†
it.
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Theorem 3.1 Under Assumptions 1-2, we have ĴNT
d→ N (0, 1) under H0 as (N,T )→∞.

Remark 1. The proof is complicated and relegated to Appendix A. The above theorem

indicates that our test statistic ĴNT is asymptotically pivotal under H0. In principle, we can

compare ĴNT with the one-sided critical value zα, i.e., the upper αth percentile from the

standard normal distribution, and reject the null when ĴNT > zα at the α significance level.

In practice, in order to improve the finite sample performance of the test statistic, we suggest

the use of bootstrap p-values and provide a procedure to obtain them, see Section 3.4 for the

details.

3.3 Asymptotic distribution under local alternatives

To study the local power property of the proposed test, we consider the following Pitman local

alternatives:

H1,γNT : βit = β0 + γNT∆β,it and fit = γNT∆f,it (3.5)

where γNT → 0 as (N,T ) → ∞, ∆β,it = ∆β,i (τt), ∆f,it = ∆f,i (τt), ∆β,i (·): [0, 1] → Rd and

∆f,i (·): [0, 1]→ R are all nonzero and continuous functions. Clearly, γNT controls the speed at

which the local alternatives converge to the null hypothesis. Let g∆,it ≡ X ′it∆β,it+∆f,it, g∆,i =

(g∆,i1, . . . , g∆,iT )′ and ḡ∆,it = X ′it∆̄β, where ∆̄β = [
∑N

i=1E (X ′iMιTXi)]−1
∑N

i=1E (X ′iMιT g∆,i).

Then we define

ğ∆,it = g∆,it − ḡ∆,it = X ′it
(
∆β,it − ∆̄β

)
+ ∆f,it and

Φ∆,NT ≡
1
NT

N∑
i=1

T∑
t=1

ğ2
∆,itwit.

To study the limiting behavior of ĴNT under the local alternative H1,γNT , we need some

additional assumptions on the functions ∆β,i (·) and ∆f,i (·).
Assumption 3. For each i, ∆β,il (·) for l = 1, . . . , d, and ∆f,i (·) are all continuously differen-

tiable up to κ-th order for some κ ≥ 2;

Assumption 4. As (N,T )→∞, lim(N,T )→∞ ∆̄β exists and Φ∆ = plim(N,T )→∞Φ∆,NT > 0.

The following theorem gives the asymptotic distribution of ĴNT under H1,γNT .

Theorem 3.2 Suppose that Assumptions 1-4 hold. As (N,T )→∞, ĴNT
d→ N (Φ∆, 1) under

H1,γNT with γNT = N−1/4T−1/2V1/4
NT .
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Remark 2. (i) Theorem 3.2 implies that our test has non-trivial asymptotic power against

alternatives that diverge from the null at the rate O
(
N−1/4T−1/2K1/4

)
by noting that VNT =

Op (K) (see Lemma A.5 in appendix). The power increases with the magnitude of Φ∆. Clearly,

as either N or T increases, the power of our test will increase but it increases faster as T →∞
than as N → ∞. Similar patterns have been found in the testing literature of panel data

models such as Su et al. (2018). (ii) The local alternative H1,γNT includes the deviations from

H0 only along time or across individuals, which means that our proposed test can detect the

instability of homogeneous coefficients or the heterogeneity of TVCs.

To study the global consistency of ĴNT under H1, let γNT = 1 in (3.5). Under Assumptions

1-4, we can show that plim(N,T )→∞ ΓNT = Φ∆, B̂NT = Op
(
N1/2K

)
and V̂NT = Op (K) under

H1. The following corollary gives the global consistency of ĴNT under H1.

Corollary 3.3 Suppose that Assumptions 1-4 hold and N1/2TK−(1/2+2κ) → 0. Then under

H1, N−1/2T−1V̂1/2
NT ĴNT

p→ Φ∆ as (N,T )→∞ and .

Remark 3. Corollary 3.3 establishes that ĴNT diverges to ∞ at rate Op
(
N1/2T/K1/2

)
un-

der H1, which means that P (ĴNT > dNT ) → 1 as (N,T ) → ∞ for any sequence dNT =

o(N1/2T/K1/2) provided Φ∆ > 0.

Remark 4. The choice of optimal number of sieve terms is important in practice. However, it

is still an open question in the literature of nonparametric testing for panel data models. One

possible solution is to maximize the power when the size is controlled by following the optimal

choice of bandwidth in kernel testing such as Horowize and Spokoiny (2003) and Gao and

Gijbels (2008). We leave it as a future research topic. In simulation and application, we adopt

a sequence of numbers of sieve terms and find them work reasonable well in finite samples.

3.4 Bootstrap version of the test

Even if ĴNT follows N(0, 1) asymptotically under the null H0, due to the nature of nonpara-

metric estimation in the test statistics, it is well known in the literature that tests based on

nonparametric estimation usually suffer severe size distortion in finite samples if the standard

normal critical values is used (see Li and Wang (1998) and Su and Hoshino (2016)). As a result,

in order to improve the finite sample performance of our test, we follow Hansen (2000) and

propose a fixed-regressor bootstrap procedure to obtain the bootstrap p-values. The procedure

goes as follows:

14



1. Obtain β̂FE and ûit under H0. For each i, run auxiliary time series regression of ûit on

Xit and constant with TVCs to get the fitted value ĝ†it, residual ε̂r,it, and then calculate

ĴNT ;

2. For each i, obtain the wild bootstrap errors
{
ε∗r,it

}
: ε∗r,it = ε̂r,it%it where %it’s are IID

N (0, 1). Then generate the bootstrap analogue Y ∗it of Yit by holding the regressors Xit

as fixed: Y ∗it = X ′itβ̂FE + α̂i + ε∗r,it, where α̂i = T−1
∑T

t=1

(
ûit − ĝ†it

)
.

3. Given the bootstrap resample {Y ∗it , Xit} , estimate the linear homogenous panel data

model and run N auxiliary time series regressions as Step 1. For each i and t, denote

the fitted value and residual as ĝ∗it and ε̂∗r,it, respectively. Calculate the bootstrap test

statistic Ĵ∗NT based on
{
ĝ∗it, ε̂

∗
r,it

}
.

4. Repeat Steps 2-3 for B times and index the bootstrap statistics as {Ĵ∗NT,b}Bb=1. Calculate

the bootstrap p-value: p∗ = B−1
∑B

b=1 1(Ĵ∗NT,b ≥ ĴNT ).

It is straightforward to implement the above bootstrap procedure. Note that we impose the

null hypothesis of linear and homogeneity in Step 2. LetWNT ≡ {(Xit, Yit) : i = 1, . . . , N, t = 1,

. . . , T} be the observed sample. Denote Q(ε̂)
ż,i = T−1

∑T
t=1 ŻitŻ

′
itε̂

2
it. The next theorem implies

the asymptotic validity of the above bootstrap procedure.

Theorem 3.4 Suppose that Assumptions 1-2 hold. Assume that 0 < mini λmin

(
Q

(ε̂)
ż,i

)
≤

maxi λmax

(
Q

(ε̂)
ż,i

)
<∞. Then as (N,T )→∞, Ĵ∗NT

d∗→ N (0, 1) in probability, where d∗ denotes

weak convergence under the bootstrap probability measure conditional on WNT .

4 Extensions to Stability Test or Homogeneity Test

When the null hypothesis H0 in (2.15) is rejected, one may have interest in estimating the

models with heterogenous time-invariant coefficients or homogeneous TVCs. Then it is natural

to test the structures imposed by these models. In this section, we briefly discuss how to extend

our proposed test to these two cases.

4.1 Test for the stability of heterogeneous coefficients

When H0 in (2.15) is rejected, a natural choice is to estimate a panel data model with het-

erogeneous slope coefficients without time variation (e.g., Hsiao and Pesaran, 2008). Then the
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null hypothesis now is given by

Hs0 : (βi (·) , fi (·)) = (βi, 0) for some vector βi ∈ Rd and all i’s, (4.1)

against the alterative hypothesis Hs1 : (βi (·) , fi (·)) 6= (βi, 0) for some i’s. To study the local

power property of the proposed test, we consider the following local Pitman alternatives

Hs1,γNT : βit = β0i + γNT∆β,it and fit = γNT∆f,it,

where γNT → 0 as (N,T )→∞, ∆β,it = ∆β,i (τt), ∆f,it = ∆f,i (τt), and ∆β,i (·) and ∆f,i (·) are

nonzero continuous functions of time regressors for some is.

Under Hs0, the model (2.1) becomes the usual heterogeneous linear panel data model

Yit = X ′itβi + αi + εit. (4.2)

One can estimate the individual-specific coefficients βi by the linear regression of Yit on 1 and

Xit. With the simple OLS estimator, we can estimate βi and git by

β̂i =
(
X ′iMιTXi

)−1
X ′iMιT Yi and ĝit = X ′itβ̂i, (4.3)

respectively. The augmented residuals are given by ûit = Yit − ĝit. As Section 3.2, we can run

N auxiliary time-series regressions and construct the test statistic ΓNT as (2.27).

Define QẊ,i = XiMιTXi/T = Ẋ ′iẊi/T and QŻẊ,i = Z ′iMιTXi/T = ŻiẊi/T . Also define

a T × T matrix K†i = Ż†iQ
−1
ż,iQw,iQ

−1
ż,i Ż

†′
i and denote its (t, s)th element as K†i,ts, where Ż†i =

Żi − ẊiQ
−1
Ẋ,i
Q′
ŻẊ,i

. Define the asymptotic bias and variance terms B†NT = 1√
NT

∑N
i=1K

†
i,ttσ

2
it

and V†NT = 2
NT 2

∑N
i=1

∑
1≤t6=s≤T K

†2
i,tsσ

2
itσ

2
is, respectively. Then the normalized test statistic is

J†NT =
(
N1/2TΓNT − B†NT

)
/
√

V†NT . However, J†NT is infeasible since B†NT and V†NT are not

observable. Let ε̂r,it = ûit − ûi and ûi = T−1
∑T

t=1 ûit. Then we can calculate the estimators

for bias and variance terms respectively by

B̂†NT =
1√
NT

N∑
i=1

K†i,ttε̂
2
r,it, and V̂†NT =

2
NT 2

N∑
i=1

∑
1≤s 6=t≤T

K†2i,tsε̂
2
r,itε̂

2
r,is.

The feasible testing statistic is given by

Ĵ†NT =
(
N1/2TΓNT − B̂†NT

)
/

√
V̂†NT .

Let g∆,it ≡ X ′it∆β,it + ∆f,it and g∆,i = (g∆,i1, . . . , g∆,iT )′. Let β̄∆i = [E (X ′iMιTXi)]−1

×E (X ′iMιT g∆,i) and ḡ∆,it = X ′itβ̄∆i under Hs1,γNT . Then we can define ğ∆,it = g∆,it − ḡ∆,it

and Φ∆,NT ≡ 1
NT

∑N
i=1

∑T
t=1 ğ

2
∆,itwit.
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Assumption 4∗. As (N,T )→∞, lim(N,T )→∞ β̄∆i exists and Φ∆ = plim(N,T )→∞Φ∆,NT > 0.

The following theorem gives the asymptotic distributions of Ĵ†NT under Hs0 and Hs1,γNT .

Theorem 4.1 (i) Under Assumptions 1-2, Ĵ†NT
d→ N (0, 1) as (N,T )→∞ under Hs0;

(ii) Suppose that Assumptions 1-3, and 4∗ hold. As (N,T )→∞, Ĵ†NT
d→ N (Φ∆, 1) under

Hs1,γNT with γNT = Op

(
N−1/4T−1/2V1/4

NT

)
.

To study the consistency of Ĵ†NT under H1s, let γNT = 1. We need to study the asymptotic

properties of B̂†NT and V̂†NT . The following corollary gives the global consistency of Ĵ†NT under

H1s.

Corollary 4.2 Suppose Assumptions 1-3, and 4∗ hold. V̂†1/2NT N
−1/2T−1Ĵ†NT

p→ Φ∆ as (N,T )→
∞ under H1s.

4.2 Test for the homogeneity of time-varying coefficients

When H0 is rejected, another natural choice is to fit a panel data model with homogeneous

TVCs, where the parameters are common across individuals (e.g., Chen and Huang (2018) and

Li et al. (2011)). Then one may be interested in testing for the homogeneity of TVCs. To be

specific, the null hypothesis under investigation now becomes

Hh0 : (βi (·) , fi (·)) = (β0 (·) , f0 (·)) for some (β0 (·) , f0 (·)) and all i’s, (4.4)

against the alternative hypothesis Hh1 : (βi (·) , fi (·)) 6= (βj (·) , fj (·)) for some i 6= j. To facili-

tate the study of the local power property, we consider the following Pitman local alternatives

Hh1,γNT : βit = β0 (τt) + γNT∆β,it, and fit = f0 (τt) + γNT∆f,it,

where γNT → 0 as (N,T ) → ∞, ∆β,it = ∆β,i (τt), ∆f,it = ∆f,i (τt), and
(

∆′β,i (·) ,∆f,i (·)
)
6=(

∆′β,j (·) ,∆f,j (·)
)

for some i 6= j, ∆β,i (·) and ∆f,i (·) are all nonzero continuous functions of

time regressors.

When Hh0 holds, the model reduces to

Yit = X ′itβ (τt) + f (τt) + αi + εit. (4.5)

Noting that β (·) and f (·) are all unknown, as before, we consider the sieve estimation of the

above model (4.5). Let BL
t ≡ BL (τt), BL

−1,t ≡ BL
−1 (τt), and ZLit ≡ (BL

−1,t,
(
Xit ⊗BL

t

)′)′. Let
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Πf = (Πf,1, . . . ,Πf,L−1) ∈ RL−1 with Πf,k = 〈f (·) , Bk (·)〉 and Πβ,l = (Πβ,l0, . . . ,Πβ,l,L−1)′

with Πβ,lk = 〈βl (·) , Bk (·)〉 for k = 1, . . . , L− 1 such that

f (·) ≈ BL
−1 (·)′Πf and βl (·) ≈ Πβ,lB

L (·) for l = 1, . . . , d. (4.6)

Denote Π ≡ (Π′f ,vec(Πβ)′)′, where Πβ ≡ (Πβ,1, . . . ,Πβ,d) ∈ RL×d.10 Using the approximations

in (4.6), we have git = X ′itβt + ft ≈ ZL′it Π and the induced linearized panel data model is given

by

Yit = ZL′it Π + αi + ε†r,it, (4.7)

where ε†r,it = εit + rg,it, and rg,it = git−ZL′it Π is the sieve approximation error of git. The usual

FE estimator for Π is

Π̂FE =

(
N∑
i=1

ZL′i MιTZ
L
i

)−1 N∑
i=1

ZL′i MιT Yi. (4.8)

Based on (4.8), the sieve estimators for Πf and Πβ are denoted by Π̂f and Π̂β, respectively.

Then f (·), β (·) and git are estimated by

f̂ (·) = BL
−1 (·)′ Π̂f , β̂ (·) = Π̂βB

L (·) , and ĝit = ZL′it Π̂FE . (4.9)

The augmented residuals are given by ûit = Yit − ĝit. As Section 3.2, we can run the auxiliary

time-series regressions and construct the test statistic ΓNT as (2.27). Based on ε̂r,it = ûit − ûi
where ûi = T−1

∑T
t=1 ûit, we calculate B̂‡NT and V̂‡NT as (3.3). Then the feasible test statistic

is given by

Ĵ‡NT =
(
N1/2TΓNT − B̂‡NT

)
/

√
V̂‡NT .

Let g∆,it ≡ X ′it∆β,it + ∆f,it and g∆,i = (g∆,i1, . . . , g∆,iT )′. Let ḡ∆,it = ZL′it Π̄∆, where

Π̄∆ = [
∑N

i=1E(ŻL′i Ż
L
i )]−1

∑N
i=1E

(
ŻL′i g∆,i

)
. Then we define ğ∆,it = g∆,it− ḡ∆,it and Φ∆,NT ≡

1
NT

∑N
i=1

∑T
t=1 ğ

2
∆,itwit. We establish the limiting distribution of the test statistic Ĵ‡NT in the

following theorem.

Theorem 4.3 (i) Suppose that Assumptions 1-2 and Assumptions 3∗ and 5 in Appendix B

hold. Then Ĵ‡NT
d→ N (0, 1) under Hh0 as (N,T )→∞.

(ii) Suppose that Assumptions 1-2 and Assumptions 3∗, 4∗∗ and 5 in Appendix B hold. As

(N,T )→∞, Ĵ‡NT
d→ N (Φ∆, 1) under Hh1,γNT with γNT = N−1/4T−1/2V‡1/4NT .

10Noting that the constant term is left out in the approximation of f (·) to impose the identification restriction∫ 1

0
f (τ) dτ = 0 automatically.
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To study the consistency of Ĵ‡NT under H1h, let γNT = 1. The following corollary gives the

global consistency of Ĵ‡NT under Hh1.

Corollary 4.4 Suppose that Assumptions 1-2, 4-5 and Assumptions 3∗ in Appendix B hold.

Then under Hh1, V‡1/2NT N
−1/2T−1Ĵ‡NT

p→ Φ∆ as (N,T )→∞.

The above result establishes that Ĵ‡NT diverges to infinity at rate Op
(
N1/2T/K1/2

)
un-

der Hh1, which means that P (Ĵ‡NT > dNT ) → 1 as (N,T ) → ∞ for any sequence dNT =

o(N1/2T/K1/2) provided Φ∆ > 0.

5 Monte Carlo Simulations

In this section, we conduct a set of Monte Carlo simulations to evaluate the finite samples

performance of our proposed joint test for homogeneity and stability of coefficients. We consider

the following seven data generating processes (DGPs):

DGP 1. Homogeneous constant coefficient: Yit = 2Xit + αi + εit;

DGP 2. Homogeneous TVC: Yit = f0 (τt) + β0 (τt)Xit + αi + εit;

DGP 3. Heterogeneous constant coefficient: Yit = βiXit + αi + εit, where βi ∼IID U [0, 2] ;

DGP 4. Fully heterogeneous TVC: Yit = δ1if0 (τt) + δ2iβ0 (τt)Xit + αi + εit, where δ1i ∼IID

U [0.5, 1.5] and δ2i ∼IID U [−0.5, 0.5] ;

DGP 5. Grouped heterogeneous TVCs:

Yit =


0.25f0 (τt) + 0.25β0 (τt)Xit + αi + εit, i = 1, . . . , dN/3e ,
0.5f0 (τt) + 0.5β0 (τt)Xit + αi + εit, i = dN/3e+ 1, . . . , d2N/3e ,
f0 (τt) + β0 (τt)Xit + αi + εit, i = d2N/3e+ 1, . . . , N ;

DGP 6. Homogeneous constant coefficient with an abrupt structural break:

Yit =

 2Xit + αi + εit, t < T/2,

−2Xit + αi + εit, t ≥ T/2;

DGP 7. Homogeneous TVCs with an abrupt structural break:

Yit =

 f0 (τt) + β0 (τt)Xit + αi + εit, t < T/2,

0.5f0 (τt) + 1.5β0 (τt)Xit + αi + εit, t ≥ T/2.
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Among all DGPs, the fixed effects αi’s follow IID N (0, 1), the regressors Xit’s are generated

according to

Xit = 0.5αi +
2 exp [(τt − µi) /0.1]

1 + exp [(τt − µi) /0.1]
+ εx,it

with εx,it ∼IID N (0, 1) and µi ∼IID U [0.05, 0.1], and the error εit’s are conditional het-

eroskedastic as εit =
√

0.05X2
it + 0.5εit with εit ∼IID N (0, 1).11 In DGPs 2, 4, 5, and 7, we

set

f0 (υ) = 2υ2 − υ + 1/6 and β0 (υ) =
exp [(υ − 0.5) /0.1]

1 + exp [(υ − 0.5) /0.1]
,

which are used to generate the smooth trend functions and time-varying coefficient functions.

Similar function form for β0 (·) is adopted in Su et al. (2018).

DGP 1 is for size study and the other 6 DGPs are for power study for the joint test of

homogeneity and stability. In the implementation of the specification test, we use the cosine

functions as our basis functions in the sieve approximation of unknown functions. To investigate

the sensitivity of our test to different choices of number of basis functions, we both consider

a sequence of numbers Kc =
⌊
cT 1/6

⌋
with c = 1, 2, 3 and the number Kcv chosen by the

leave-one-out cross-validation (LOOCV) method12. Different combinations of sample sizes are

used: T = 25, 50, 100 and N = 25, 50. For each combination of sample sizes, the number of

replications is 500 times. In bootstrap, we consider 400 resamples for size studies and 300

resamples for power comparisons.

The simulation results for the joint test of homogeneity and stability in DGPs 1-7 are

summarized in Table 1.13 First, for DGP 1, the empirical sizes of our test statistic are very

close to their corresponding nominal values (1%, 5% and 10%) either when we use a sequence

of numbers for the sieve terms or the LOOCV to choose the number of sieve terms during the

estimation. Second, the proposed test has good power for DGPs 2-7: (i) for all 6 DGPs, the

empirical power tends to 1 as either N or T increases, and has a larger speed when T increases

than N increases, which confirms that ĴNT diverges to infinity faster as T increases than N

11To save space, we only report the results for conditional heteoskedastic errors. The results for homoskedastic

errors are also availabe upon request.
12Kcv = argminK∈[1,Kmax]

∑N
i=1

∑T
t=1(ûit − ĝ†i(−t) (K) − α̂i,−t (K))2 where ĝ†i(−t) (K) and α̂i(−t) (K) come

from the ith auxillary regression of uit on (X ′it, 1)
′

with TVCs without using the tth observation and K or K−1

basis functions are adopted in the sieve approximations. The theoretical verification of LOOCV is beyond this

paper.
13We also report the additional simulation results for the test of homogeneity for TVCs (Hh0 vs Hh1) and the

test of stability for heterogeneous coefficients (Hs0 vs Hs1) in Appendix B.
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increases under H1 as shown in Corollary 3.3; (ii) the power increases much faster in DGPs 4-5

(variation of parameter both along time and across individuals) than in DGP 2 (variation of

parameters along time) and DGP 3 (variation of parameters across individuals), which comes

from the fact that Φ∆ takes larger values in the DGPs 4-5; (iii) the empirical powers for DGPs

6-7 are close to 1 for all different scenarios, where the parameters are homogenous but have

jumps along time, even Corollary 3.3 does not cover the case with jump in parameters along

time. Overall, we can observe that our proposed test statistic performs very well in all scenarios

in simulations.

6 Empirical Application to Environmental Kuznets Curve

In this section, we apply our proposed test to study the Environmental Kuznets Curve (EKC)

of U.S. We are mainly interested in testing the validity of homogeneous linearity and stability

restrictions in model, which is widely used in the EKC estimation.

The EKC hypothesis is initiated by the seminal works of Grossman and Krueger (1993,

1995) and becomes popular in the World Bank. Both theoretical and empirical literature on

the topic is voluminous and continues to grow, and so do the controversial findings. Many

empirical works seek to establish an inverted U-shaped nexus between income per capita and

environmental degradation, which implies that the level of pollution increases until some level of

prosperity is obtained. However, the inverted U-shaped relationship is questioned by Millimet

et al. (2003), where a semiparametric partially linear model is used to fit the model and the

parametric specification is rejected. Recently, Li et al. (2016) detect multiple structural breaks

in EKC. These findings show that the regression relationship between income per capita and

environmental degradation may be misspecified and vary along time. Different from previous

studies, we reinvestigate the parametric specification of EKC using our proposed test.

We consider the following regression model

lnPolit = β1,it ln Incit + β2,it (ln Incit)
2 + fit + αi + εit (6.1)

where i = 1, .., N, t = 1, . . . , T, lnPolit is the pollutant emission of sulfur dioxide (SO2)

measured by metric tones per capita, ln Incit represents the income for state i at time t, αi

is the unobserved state-specific fixed effect; β1,it and β2,it are time-varying slope coefficients
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Table 1: Simulation results for joint test for DGP 1-7
K1 K2 K3 Kcv

DGP T N 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 25 25 0.020 0.066 0.126 0.010 0.044 0.090 0.010 0.050 0.094 0.022 0.066 0.126

50 0.012 0.056 0.110 0.014 0.042 0.084 0.008 0.046 0.106 0.012 0.056 0.112
50 25 0.012 0.040 0.078 0.010 0.034 0.084 0.008 0.046 0.106 0.012 0.040 0.078

50 0.008 0.042 0.094 0.006 0.054 0.114 0.004 0.052 0.124 0.008 0.042 0.094
100 25 0.008 0.056 0.114 0.010 0.046 0.092 0.014 0.054 0.106 0.008 0.046 0.098

50 0.008 0.060 0.106 0.008 0.058 0.126 0.008 0.062 0.110 0.012 0.060 0.110

2 25 25 0.144 0.404 0.568 0.036 0.192 0.316 0.000 0.068 0.128 0.148 0.408 0.568
50 0.288 0.568 0.752 0.104 0.244 0.444 0.032 0.108 0.216 0.288 0.568 0.752

50 25 0.832 0.972 0.992 0.664 0.900 0.968 0.452 0.736 0.868 0.832 0.972 0.992
50 0.988 1.000 1.000 0.932 0.996 1.000 0.752 0.952 0.980 0.988 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 25 25 0.128 0.332 0.488 0.084 0.216 0.344 0.024 0.112 0.232 0.128 0.332 0.488
50 0.160 0.420 0.612 0.084 0.236 0.400 0.044 0.160 0.292 0.160 0.420 0.612

50 25 0.426 0.724 0.840 0.320 0.596 0.736 0.244 0.500 0.632 0.480 0.724 0.840
50 0.744 0.936 0.964 0.604 0.844 0.928 0.464 0.740 0.868 0.744 0.936 0.964

100 25 0.872 0.956 0.988 0.820 0.948 0.976 0.752 0.920 0.968 0.892 0.976 0.988
50 1.000 1.000 1.000 0.980 1.000 1.000 0.976 1.000 1.000 1.000 1.000 1.000

4 25 25 0.612 0.832 0.936 0.284 0.572 0.728 0.088 0.248 0.420 0.616 0.832 0.940
50 0.900 0.980 0.992 0.676 0.860 0.924 0.196 0.472 0.644 0.900 0.980 0.992

50 25 1.000 1.000 1.000 0.996 1.000 1.000 0.944 0.996 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 25 25 1.000 1.000 1.000 0.976 1.000 1.000 0.800 0.932 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 0.996 1.000 1.000 0.964 0.992 1.000 1.000 1.000 1.000

50 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 25 25 0.884 0.976 0.992 0.716 0.924 0.968 0.116 0.304 0.472 0.844 0.952 0.980
50 0.988 0.996 1.000 0.920 0.984 0.996 0.152 0.444 0.644 0.968 0.992 0.996

50 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 25 25 0.936 0.992 1.000 0.708 0.892 0.968 0.076 0.248 0.392 0.940 0.988 1.000
50 0.992 0.996 1.000 0.936 0.988 0.996 0.124 0.388 0.616 0.992 0.996 1.000

50 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 0.980 1.000 1.000 0.976 1.000 1.000 1.000 1.000 1.000

Note: 1. KC=
⌊
CT 1/6

⌋
, C = 1, 2, 3, Kcv refers to the number of sieve terms by LOOCV;

2. DGP 1 is for size study and DGPs 2-7 are for power comparison.
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for the ith individual, and fit is the heterogeneous time trend. Presumably, the time trend fit

is related with pollution emission across countries. We apply our test the homogeneity and

stability of (β1,it, β2,it, fit) jointly. The data used in our paper is from Millimet et al. (2003)14,

which includes 48 states (N = 48) and ranges from year 1929 to year 1994 (T = 66). We

transform the metric tone measurement for SO2 emission into kilogram to achieve variables of

comparable magnitude as the per capita income series.

To apply the joint test of homogeneous and stable coefficients along both time and individual

dimensions, we first estimate the model under the null hypothesis, which is

lnPolit = β1 ln Incit + β2 (ln Incit)
2 + αi + εit. (6.2)

The estimation and testing procedure follow similarly as discussed in Section 2. The FE

estimation of model (6.2) gives us that

β̂1 = 9.5706∗∗∗(0.4358) and β̂2 = −0.5608∗∗∗ (0.0247) ,

where the standard error is reported in parentheses. The estimators for β1 and β2 are both

significant at 1% significant level, and we get an inverted U-shaped EKC. In the testing, we

run N auxiliary regressions of augmented residuals on ln Incit and (ln Incit)
2 with time-varying

coefficients and trends. For the sieve approximation of unknown functions, we adopt the cosine

functions as basis and consider a sequence of numbers for different functions. We consider

K1 = 4, 5, 6, 7 in the approximation of the coefficient β1 (·) for ln Incit, K2 = 4, 5, 6 in the

approximation of the coefficient β2 (·) for (ln Incit)
2, and K3 = 3, 4, 5 in the approximations of

time trend fi (·).15 We report the p-values with 2000 bootstrap resamples.

The results for testing homogeneity and stability are reported in Table 2. We can find that

almost all the p-values are smaller than 0.01, which suggest the strong evidence of rejecting

homogeneity and stability restriction on parameters in model (6.1) even at 1% significant level.

7 Conclusion

In this paper, we provide a nonparametric test for the homogeneity and stability of parameters

in panel data models. After fitting the model under the null hypothesis of homogeneity and
14We would like to thank Daniel Millimet for sharing their data set.
15We don’t report the result for the LOOCV K because the LOOCV procedure always reachs the upper bound

K1,max or K2,max when we use different K1,max and K2,max for the used data set.
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Table 2: Bootstrap p-values for the joint test of homogeneity and stability (SO2)
(K1,K2,K3) p-value (K1,K2,K3) p-value (K1,K2,K3) p-value (K1,K2,K3) p-value

4,4,3 0.0415 5,4,3 0.0020 6,4,3 0.0035 7,4,3 0.0130
4,4,4 0.0090 5,4,4 0.0030 6,4,4 0.0010 7,4,4 0.0300
4,4,5 0.0025 5,4,5 0.0005 6,4,5 0.0040 7,4,5 0.0295
4,5,3 0.0030 5,5,3 0.0035 6,5,3 0.0195 7,5,3 0.0020
4,5,4 0.0030 5,5,4 0.0005 6,5,4 0.0085 7,5,4 0.0305
4,5,5 0.0005 5,5,5 0.0015 6,5,5 0.0380 7,5,5 0.0040
4,6,3 0.0035 5,6,3 0.0010 6,6,3 0.0025 7,6,3 0.0005
4,6,4 0.0005 5,6,4 0.0135 6,6,4 0.0380 7,6,4 0.0025
4,6,5 0.0090 5,6,5 0.0340 6,6,5 0.0060 7,6,5 0.0005

stability, we obtain the augmented residuals. Then we run auxiliary time series regressions

of augmented residuals on regressors with time-varying coefficients via the sieve method. Our

testing statistic is constructed by averaging all the squared fitted values, which is close to zero

under the null and deviates from zero under the alternative. We show that the testing statistic,

after being appropriately standardized, is asymptotically normally distributed under the null

and a sequence of Pitman local alternatives as both cross-sectional and time dimensions tend

to infinity. A bootstrap procedure is proposed to improve the finite sample performance of the

test. Monte Carlo simulations indicate that the proposed test performs reasonably well in finite

samples. We apply our test the pollution emission data set, and we reject the assumption of

homogeneous and stable coefficients. In addition, we extend the testing approach to test other

structures on parameters such as the homogeneity of time-varying coefficients or the stability

of heterogeneous coefficients.
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Appendix A

The appendix provides some facts, lemmas and the proofs of main results in Section 3.
Notation. Given sequences {an} and {bn}, let an . bn (an & bn) denote that bn/an (an/bn)

is bounded, and an � bn denote that both an/bn and bn/an are bounded. When {an} and
{bn} are stochastic sequences, an . bn (an & bn) denote that bn/an (an/bn) is stochastically
bounded, and an � bn mean that both an/bn and bn/an are stochastically bounded. For a
random variable X, let ‖X‖p = E (|X|p)1/p for p ≥ 1.

A Some facts and lemmas

We first state some facts and technical lemmas that are used in the proof of the main results
in Section 3. The proofs for these lemmas are given in Appendix B.

Note that we use the cosine functions basis BK
−1 (τ) = (21/2 cos (πτ) , . . . , 21/2 cos((K −

1)πτ))′ and BK (τ) = (1, 21/2 cos (πτ) , . . . , 21/2 cos((K − 1)πτ))′ to approximate f †i (·) and
β†i (·) in the auxiliary regressions, respectively. Recall that Bt = BK (τt), B−1,t = BK

−1 (τt),
Zit = (B′−1,t, X

′
it ⊗ B′t)′, Żit = Zit − Z̄i, and Ki = Ż ′iQ

−1
ż,iQw,iQ

−1
ż,i Żi. We give some facts and

bounds on them:
(i) ||T−1

∑T
t=1BtB

′
t − IK ||2 = O

(
K2/T 2

)
(see Lemma C.4 in Dong and Linton (2018));

(ii) supτ∈[0,1]

∥∥BK (τ)
∥∥2 = 2K − 1 and supτ∈[0,1]

∥∥BK
−1 (τ)

∥∥2 = 2K − 2;

(iii) ‖Zit‖2 = ‖B−1,t‖2 + ‖Xit‖2 ‖Bt‖2 ≤ supτ∈[0,1]

∥∥BK (τ)
∥∥2 (1 + ‖Xit‖2) = 2K

∥∥∥X̃it

∥∥∥2
,

where X̃it = (1, X ′it)
′;

(iv)
∥∥∥Żit∥∥∥2

≤ 2(‖Zit‖2 +
∥∥Z̄i∥∥2) ≤ 2(‖Zit‖2 + T−1

∑T
s=1 ‖Zis‖

2) ≤ 4KAit, where Ait =∥∥∥X̃it

∥∥∥2
+ T−1

∑T
s=1

∥∥∥X̃is

∥∥∥2
;

(v)Ki,tt = Ż ′itQ
−1
ż,iQw,iQ

−1
ż,i Żit ≤ λmax (Qw,i)λmax

(
Q−2
ż,i

)∥∥∥Żit∥∥∥2
≤ λmax (Qw,i)λmax

(
Q−2
ż,i

)
4KAit;

(vi) |Ki,ts| ≤ K1/2
i,ttK

1/2
i,ss = λmax (Qw,i)λmax

(
Q−2
ż,i

)
4KA1/2

it A
1/2
is .

Next, we give some lemmas and the first two are similar to Lemmas A1-A2 in Su, et al.
(2018) where spline functions are adopted as basis functions.

Lemma A.1 Suppose that Assumption 1 holds. Let g = (g0, g1, . . . , gd)′, where gl = θ′lB
K (·) ∈

G ≡ {g (·) = θ′BK (·) : θ ∈ RK} for l = 1, . . . , d, and g0 = θ′lB
K
−1 (·) ∈ G−1 ≡ {g (·) = θ′BK

−1 (·) :
θ ∈ RK−1} Then ‖g‖2i =

∑d
l=0 ‖gl‖

2
2 � ‖θ‖

2 where ‖g‖2i ≡ E{T−1
∑T

t=1[g (τt)
′ X̃it][X̃ ′itg (τt)]}

with X̃it = (1, X ′it)
′ and θ = (θ′0, θ

′
1, . . . , θ

′
d)
′.

Lemma A.2 Suppose that Assumption 1 holds. Let G ≡ {g (·) = θ′BK (·) : θ ∈ RK}. Let G⊗d

denote the collection of vector of functions g = (g0, g1, . . . , gd)′ with gl ∈ G for l = 1, . . . , d and
g0 ∈ G−1. Then for any ε > 0,
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(i) P
(

maxi supg∈G−1×G⊗d

∣∣∣∣ T−1
∑T
t=1[g(τt)

′X̃it]s

T−1
∑T
t=1 E[g(τt)

′X̃it]s
− 1
∣∣∣∣ > ε

)
= o

(
N−1

)
for s = 1, 2;

(ii) P
(

supg∈G−1×G⊗d

∣∣∣∣ (NT )−1 ∑N
i=1

∑T
t=1[g(τt)

′X̃it]2

(NT )−1 ∑N
i=1

∑T
t=1 E[g(τt)

′X̃it]2
− 1
∣∣∣∣ > ε

)
= o

(
N−1

)
.

Lemma A.3 Let Q(σ)
ż,i ≡ T−1

∑T
s=1 ŻisŻ

′
isσ

2
is and Q

(ε)
ż,i ≡ T−1

∑T
s=1 ŻisŻ

′
isε

2
is. Suppose that

Assumption 1 holds. Then
(i) P (cż ≤ mini[λmin (Qż,i)] ≤ maxi[λmax (Qż,i)] ≤ c̄ż) = 1− o

(
N−1

)
;

(ii) P (cw ≤ mini[λmin (Qw,i)] ≤ maxi[λmax (Qw,i)] ≤ c̄w) = 1− o
(
N−1

)
;

(iii) P (cż,σ ≤ mini[λmin(Q(σ)
ż,i )] ≤ maxi[λmax(Q(σ)

ż,i )] ≤ c̄ż,σ) = 1− o
(
N−1

)
,

(iv) P (maxi[λmax (Qi,ε)] ≤ c̄ż,σ) = 1− o
(
N−1

)
;

where cż, c̄ż, cw, c̄w, cż,σ and c̄ż,σ are some finite positive constants.

Lemma A.4 Suppose that Assumptions 1-3 hold. Then we have
(i) 1

NT

∑N
i=1 ‖r∆,i‖2 = O

(
K−2κ

)
; and (ii) 1

NT

∑N
i=1

∑T
t=1 r

2
∆,itwit = O

(
K−2κ

)
.

Lemma A.5 Suppose that Assumptions 1-3 hold. Then we have
(i) VNT = Op (K) ; and (ii) BNT = Op

(
N1/2K1/2

)
.

B Proofs of main results in Section 3

In this section, we provide the proofs for the theorems in Section 3.
Proof of Theorem 3.1. Note that the limiting distribution of ĴNT under H0 is a special

case of Theorem 3.2 with ∆β,i (·) = 0 and ∆f,i (·) = 0 for all i’s, or γNT = 0. See the proof of
Theorem 3.2.�

Proof of Theorem 3.2. We first investigate the behavior of augmented residuals ûit
under H1,γNT . Recall that ∆̄β = [

∑N
i=1E (X ′iMιTXi)]−1

∑N
i=1E (X ′iMιT g∆,i). Let ν∆,NT ≡

[
∑N

i=1X
′
iMιTXi]−1

∑N
i=1X

′
iMιT g∆,i − ∆̄β and νNT ≡ [

∑N
i=1X

′
iMιTXi]−1

∑N
i=1X

′
iMιT εi. By

the definition of βP , we have βP = β0 + γNT ∆̄β. Then β̂FE − βP = γNT ν∆,NT + νNT ≡ ν̆NT
and βit−βP = γNT∆c

β,it, where ∆c
β,it ≡ ∆β,it−∆̄β. It follows that g∆,it−ḡ∆,it = X ′it (βit − βP )+

γNT∆f,it = γNT

(
X ′it∆

c
β,it + ∆f,it

)
= γNT ğ∆,it, where ğ∆,it = X ′it∆

c
β,it + ∆f,it. Then

ûit = γNT ğ∆,it −X ′itν̆NT + αi + εit and ûi = γNT ğ∆,i −Xiν̆NT + ιTαi + εi. (A.1)

Using (A.1) and ΓNT = 1
NT 2

∑N
i=1 û

′
iKiûi, we have

ΓNT =
1

NT 2

N∑
i=1

(εi + γNT ğ∆,i −Xiν̆NT )′Ki (εi + γNT ğ∆,i −Xiν̆NT ) ≡
6∑
s=1

Γ(s)
NT , (A.2)

where

Γ(1)
NT ≡

1
NT 2

N∑
i=1

ε′iKiεi, Γ(2)
NT ≡

γ2
NT
NT 2

N∑
i=1

ğ′∆,iKiğ∆,i, Γ(3)
NT ≡

1
NT 2

N∑
i=1

ν̆ ′NTX
′
iKiXiν̆NT ,

Γ(4)
NT ≡

2γNT
NT 2

N∑
i=1

ε′iKiğ∆,i, Γ(5)
NT ≡

−2
NT 2

N∑
i=1

ε′iKiXiν̆NT , Γ(6)
NT ≡

−2γNT
NT 2

N∑
i=1

ğ′∆,iKiXiν̆NT .
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Using (A.2), ĴNT can be decomposed as follows

ĴNT =
N1/2TΓNT − B̂NT

V̂1/2
NT

=

(
JNT +

6∑
s=2

N1/2TΓ(s)
NT

V1/2
NT

+
BNT − B̂NT

V1/2
NT

)
V1/2
NT

V̂1/2
NT

.

We complete the proof by showing that, as (N,T )→∞: (i) JNT = (N1/2TΓ(1)
NT−BNT )/V1/2

NT
d→

N (0, 1) ; (ii) J (2)
NT ≡ N1/2TΓ(2)

NT /V
1/2
NT = Φ∆ + op (1) ; (iii) J (s)

NT ≡ N1/2TΓ(s)
NT /V

1/2
NT = op (1) for

s = 3, 4, 5, 6; (iv) B̂NT −BNT = op(K1/2); (v) V̂NT /VNT = 1 + op (1). Note that the proofs for
(iv) and (v) are given in Propositions B.2 and B.3, respectively. We are left to show (i)-(iii).

Proof of (i). Write Γ(1)
NT = 1

NT 2

∑N
i=1

∑
1≤t6=s≤T Ki,tsεisεit + 1

NT 2

∑N
i=1

∑T
t=1Ki,ttε2

it ≡
Γ(1a)
NT + Γ(1b)

NT , say. Then JNT can be further decomposed as follows

JNT =
N1/2TΓ(1a)

NT√
VNT

+
N1/2TΓ(1b)

NT − BNT√
VNT

≡ J (a)
NT + J

(b)
NT , say.

We complete the proof by showing that (ia) J (a)
NT →d N (0, 1) and (ib) J (b)

NT = op (1). The
justification of (ia) is given in Proposition B.1 below. We are left to show (ib).

To show (ib), write J
(b)
NT = J̃

(b)
NT /V

1/2
NT where J̃

(b)
NT ≡ (N1/2TΓ(1b)

NT − BNT ). Noting that
VNT = Op (K) by Lemma A.5(i), we want to verify that J̃ (b)

NT = op
(
K1/2

)
. By the definition

of BNT in (3.1) and using ε2
it = σ2

itε
2
it, we write J̃ (b)

NT = N−1/2T−1
∑N

i=1

∑T
t=1Ki,ttσ2

it

(
ε2it − 1

)
.

Let X ≡ (X1, . . . , XN ). Clearly, E(J̃ (b)
NT |X) = 0 by Assumption 1(i) and

Var
(
J̃

(b)
NT |X

)
=

1
NT 2

N∑
i=1

T∑
t=1

K2
i,ttσ

4
itVar

(
ε2it
)

+
2

NT 2

N∑
i=1

∑
1≤t<s≤T

Ki,ttKi,ssσ2
itσ

2
isCov

(
ε2it, ε

2
is

)
≡ V J1 + V J2, say.

By the fact (v) and Lemma A.3(i)-(ii), we have Ki,tt ≤ λmax (Qw,i)λ−2
min (Qż,i) 4KAit ≤ C∗KAit

uniformly with C∗ ≡ 4c̄wc−2
ż , we have V J1 ≤ maxi,tE

(
ε4it
) C2

∗
NT 2

∑N
i=1

∑T
t=1K

2A2
itσ

4
it .

K2

T

×
(

1
NT

∑N
i=1

∑T
t=1A

2
itσ

4
it

)
= Op

(
K2/T

)
= op (K) by the fact that the term in the pre-

vious parentheses is Op (1) by Markov inequality and moment conditions on Xit and σit

in Assumption 1(iv). By Assumption 1(iii),
{
ε2it
}T
t=1

are strong mixing. Then we have
|Cov

(
ε2it, ε

2
is

)
| ≤ 8αη/(1+η) (s− t)

∥∥ε2it∥∥2+2η

∥∥ε2is∥∥2+2η
by Davydov inequality (Bosq, 1998). Then
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for V J2,

|V J2| ≤
16
NT 2

N∑
i=1

∑
1≤t<s≤T

Ki,ttKi,ssσ2
itσ

2
isα

η
1+η (s− t)

∥∥ε2it∥∥2+2η

∥∥ε2is∥∥2+2η

≤ 16C2
∗K

2

NT 2

N∑
i=1

∑
1≤t<s≤T

AitAisσ
2
itσ

2
isα

η
1+η (s− t)

∥∥ε2it∥∥2+2η

∥∥ε2is∥∥2+2η

≤
[
max
i,t

(
∥∥ε2it∥∥2+2η

)
]2 16C2

∗K
2

T

 1
NT

N∑
i=1

∑
1≤t<s≤T

AitAisσ
2
itσ

2
isα

η
1+η (s− t)


.
K2

T
× V J2

where V J2 ≡ 1
NT

∑N
i=1

∑
1≤t<s≤T AitAisσ

2
itσ

2
isα

η/(1+η) (s− t). Noting that V J2 ≥ 0 and
E
(
V J2

)
≤ maxi,tE(A2

itσ
4
it)

1
T

∑
1≤t<s≤T α

η/(1+η) (s− t) <∞ by Assumptions 1(iii)-(iv). Then
we have V J2 = Op (1) by the Markov inequality. It follows that V J2 = Op

(
K2/T

)
and

Var(J̃ (b)
NT |X) = Op

(
K2/T

)
. By the Chebyshev inequality, J̃ (b)

NT = Op
(
K/T 1/2

)
= op

(
K1/2

)
by

Assumption 2.
Proof of (ii). By Assumption 3, for given BK (·), there exist Π(β)

∆,i ∈ RKd and Π(f)
∆,i ∈ RK−1

such that
ğ∆,it = X ′it

(
∆β,it − ∆̄β,NT

)
+ ∆f,it = Z ′itΠ∆,i + r∆,it, (A.3)

using the decomposition of ∆β,i (·)− ∆̄β,NT and ∆f,i (·) similar to (2.22)-(2.23), where Π∆,i ≡
(Π(f)′

∆,i ,vec(Π(β)′
∆,i ))

′ and r∆,it is the sieve approximation error. We have

J
(2)
NT ≡

1
NT 2

N∑
i=1

(
Π′∆,iZ

′
iKiZiΠ∆,i + r′∆,iKir∆,i + 2r′∆,iKiZiΠ∆,i

)
≡ J̆ (2a)

NT + J̆
(2b)
NT + J̆

(2c)
NT , say,

where r∆,i = (r∆,i1, . . . , r∆,iT )′. First, noting that Z ′iKiZi/T = Z ′iWiZi and using (A.3), we
have J̆ (2a)

NT = 1
NT

∑N
i=1

∑T
t=1 ğ

2
∆,itwit + 1

NT

∑N
i=1

∑T
t=1 r

2
∆,itwit −

2
NT

∑N
i=1

∑T
t=1 ğ∆,itr∆,itwit ≡

J̆
(2a)
NT1 + J̆

(2a)
NT2 − 2J̆ (2a)

NT3, say. Clealry, J̆ (2a)
NT1 = Φ∆ + op (1). By Lemma A.4(ii), J̆ (2a)

NT2 =
Op
(
K−2κ

)
, and further J̆

(2a)
NT3 = Op (K−κ) by Cauchy-Schwarz inequality. It follows that

J̆
(2a)
NT = Φ∆ + op (1). Second, we have J̆ (2b)

NT = 1
NT 2

∑N
i=1 r

′
∆,iMιTZiQ

−1
ż,iQw,iQ

−1
ż,iZ

′
iMιT r∆,i ≤

maxi λmax (Qw,i) maxi λmax

(
Q−1
ż,i

)
1

NT 2

∑N
i=1 r

′
∆,iŻiQ

−1
ż,i Ż

′
ir∆,i ≤ c̄wc−1

ż maxi λmax

(
T−1ŻiQ

−1
ż,i Ż

′
i

)
× 1
NT

∑N
i=1 ‖r∆,i‖2 = Op

(
K−2κ

)
by Lemma A.4(i) and the fact that T−1ŻiQ

−1
ż,i Ż

′
i has the

largest eigenvalue 1 because it is a projection matrix. By the Cauchy-Schwarz inequality,
J̆

(2c)
NT = Op (K−κ) = op (1). Then we have shown that J (2)

NT = Φ∆ + op (1) .
Proof of (iii). When l = 3, by the repeatedly use of x′Ax ≤ λmax (A)x′x for any symmetric
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matrix A and conformable vector x, we have

Γ(3)
NT =

1
NT 2

N∑
i=1

ν̆ ′NTX
′
iMιTZiQ

−1
ż,iQw,iQ

−1
ż,iZ

′
iMιTXiν̆NT

≤ max
i
λmax (Qw,i) max

i
λmax

(
Q−1
ż,i

) 1
NT 2

N∑
i=1

ν̆ ′NTX
′
iMιTZiQ

−1
ż,iZ

′
iMιTXiν̆NT

≤ c̄wc−1
ż max

i
λmax

(
T−1ŻiQ

−1
ż,i Ż

′
i

)
‖ν̆NT ‖2

1
NT

N∑
i=1

T∑
t=1

∥∥∥Ẋit

∥∥∥2

=
[
Op((NT )−1) + op

(
γ2
NT

)]
Op (1) = op

(
N−1/2T−1K1/2

)
because of ν̆NT = γNT ν∆,NT+νNT = op (γNT )+Op

(
(NT )−1/2

)
. Noting that V1/2

NT = Op
(
K1/2

)
by Lemma A.5(i), we have J (3)

NT = N1/2TΓ(3)
NT /V

1/2
NT = op (1).

When l = 4, we write Γ(4)
NT = 2γNT

NT 2

∑N
i=1 ε

′
iKiğ∆,i = 2γNT

NT

∑N
i=1

∑T
t=1 εitŻ

′
itGi, where Gi ≡

T−1Q−1
ż,iQw,iQ

−1
ż,iZ

′
iMιT ğ∆,i. Note that E(Γ(4)

NT |X) = 0 by Assumption 1(ii) and

Var(Γ(4)
NT |X) =

4γ2
NT

N2T 2

N∑
i=1

T∑
t=1

Ż ′itGiG
′
iZitσ

2
it +

8γ2
NT

N2T 2

N∑
i=1

∑
1≤t<s≤T

Ż ′itGiG
′
iŻisσitσisCov (εit, εis)

≡ V Γ(4a)
NT + V Γ(4b)

NT , say.

For V Γ(4a)
NT , we have

V Γ(4a)
NT =

4γ2
NT

N2T 2

N∑
i=1

T∑
t=1

Ż ′itQ
−1
ż,iQw,iQ

−1
ż,iZ

′
iMιT

ğ∆,iğ
′
∆,i

T
MιTZi/T

(
Q−1
ż,iQw,iQ

−1
ż,i

)
Żitσ

2
it

≤
4γ2

NT

N2T 2

N∑
i=1

λmax

(
ğ∆,iğ

′
∆,i

T

)
T∑
t=1

Ż ′itQ
−1
ż,iQw,iQ

−1
ż,iQw,iQ

−1
ż,i Żitσ

2
it

≤ max
i
λ2

max

(
Q−1
ż,i

)
max
i
λ2

max (Qw,i)
4γ2

NT

NT

(
1
N

N∑
i=1

‖ğ∆,i‖2

T

1
T

T∑
t=1

∥∥∥Żit∥∥∥2
σ2
it

)

.
4γ2

NT

NT

(
1
N

N∑
i=1

‖ğ∆,i‖4

T 2

)1/2
 1
N

N∑
i=1

(
2K
T

T∑
t=1

Aitσ
2
it

)2
1/2

= Op

(
γ2
NTK

NT

)
.

where we use λmax

(
T−1ğ∆,iğ

′
∆,i

)
= T−1tr

(
ğ∆,iğ

′
∆,i

)
= T−1 ‖ğ∆,i‖2 in the second inequality,

and in the last equation we useN−1T−2
∑N

i=1 ‖ğ∆,i‖4 = Op (1) andN−1
∑N

i=1(T−1
∑T

t=1Aitσ
2
it)

2

= Op
(
K2
)

which can be easily verified by Markov inequality and moment conditions in As-
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sumption 1(iv). For V Γ(4b)
NT , by Davydov inequality (Bosq, 1998) again, we have

V Γ(4b)
NT ≤

8γ2
NT

N2T 2

N∑
i=1

∑
1≤t<s≤T

∣∣∣Ż ′itGiG′iŻis∣∣∣σitσis ‖εit‖2+2η ‖εis‖2+2η α
η

1+η (t− s)

.
γ2
NTK

N2T 3

N∑
i=1

∑
1≤t<s≤T

‖ğ∆,i‖2A1/2
it A

1/2
is σitσis ‖εit‖2+2η ‖εis‖2+2η α

η
1+η (t− s) = Op

(
γ2
NTK

NT

)

where we use the fact that |Ż ′itGiG′iŻis| ≤ T−1 ‖ğ∆,i‖2 λmax(Qw,iQ−1
ż,iQw,i)λ

2
max(Q−1

ż,i )
∥∥∥Żit∥∥∥∥∥∥Żis∥∥∥

. KA1/2
it A

1/2
is T−1 ‖ğ∆,i‖2 uniformly in i, t and s in the second inequality and the last equation

can be verified as the determination of probability order of V J2. By Chebyshev inequality,
Γ(4)
NT = Op(γNT

√
K/ (NT )) = op

(
N−1/2T−1K1/2

)
. It follows that J (4)

NT = op (1).
When l = 5, we can write Γ(5)

NT = F ν̆NT , where F ≡ N−1T−2
∑N

i=1 ε
′
iKiXi. Follow-

ing the proof of Γ(4)
NT , we can show that F = Op(

√
K/ (NT )). Then we have

∣∣∣Γ(5)
NT

∣∣∣ ≤
Op(

√
K/ (NT ))[op (γNT ) +Op((NT )−1/2)] = op

(
N−1/2T−1K1/2

)
. It follows that J (5)

NT = op (1).
When l = 6, we have J (6)

NT = op (1) by Cauchy-Schwarz inequality.�

Proposition B.1 Suppose Assumptions 1-4 hold. We have J
(a)
NT = N1/2TΓ(1a)

NT /V
1/2
NT →d

N (0, 1) as (N,T )→∞.

Proof. Write J
(a)
NT =

√
NZN , ZN = 1

N

∑N
i=1Zi with Zi = 2

TV1/2
NT

∑
1≤t<s≤T K̃i,tsεitεis

and K̃i,ts ≡ Ki,tsσitσis. Noting that Zi’s are independent but not identically distributed (inid)
across i, we prove the proposition by the Linderberg-Feller CLT conditional on X. We complete
the proof by verifying Theorem 5.10 in White (2001). It suffices to show that (i) σ̄2

N =

NVar
(
ZN |X

)
=Var

(
J

(a)
NT |X

)
= 1 + op (1); and (ii) EZ4

i ≤ C <∞ for all i.
Proof of (i). Noting that {εit} are an m.d.s., we have

Var
(
J

(a)
NT |X

)
=

4
NT 2VNT

Var

 N∑
i=1

∑
1≤t<s≤T

Ki,tsεitεis


=

4
NT 2VNT

N∑
i=1

∑
1≤t1<s1≤T

∑
1≤t2<s2≤T

K̃i,t1s1K̃i,t2s2E (εit1εit2εis1εis2)

=
4

NT 2VNT

N∑
i=1

∑
1≤t<s≤T

K̃2
i,ts +

4
NT 2VNT

N∑
i=1

∑
1≤t1 6=t2<t3≤T

K̃i,t1t3K̃i,t2t3E
(
εit1εit2ε

2
it3

)
≡ 1 + V J

(a)
NT , say.

We are left to show that V J (a)
NT = op (1). For V J (a)

NT , we consider two cases for the time indices
t1, t2, t3: (a1) |t1 − t2| > t3 − max (t1, t2) and (a2) |t1 − t2| ≤ t3 − max (t1, t2). Then we can
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write

V J
(a)
NT =

4
NT 2VNT

N∑
i=1

 ∑
case (a1)

+
∑

case (a2)

 K̃i,t1t3K̃i,t2t3E (εit1εit2ε2it3) ≡ V J (a1)
NT +V J (a2)

NT , say.

For V J (a1)
NT , we have

∣∣E (εit1εit2ε2it3)∣∣ ≤ 8αη/(1+η) (|t2 − t1|) ‖εit1‖2+2η

∥∥εit2ε2it3∥∥2+2η
by Davydov

inequality. Then

∣∣∣V J (a1)
NT

∣∣∣ ≤ 64 maxi,t ‖εit‖2+2η maxi,ts
(∥∥εitε2is∥∥2+2η

)
NT 2VNT

N∑
i=1

∑
1≤t1<t2<t3≤T

∣∣∣K̃i,t1t3∣∣∣ ∣∣∣K̃i,t2t3∣∣∣α η
1+η (t2 − t1)

.
1

NT 2VNT

N∑
i=1

∑
1≤t1<t2<t3≤T

∥∥∥Ż∗it1∥∥∥∥∥∥Ż∗it2∥∥∥∥∥∥Ż∗it3∥∥∥2
α

η
1+η (t2 − t1) ≡ V J (a1)

NT , say,

where Ż∗it = Żitσit. Note that

E
(
V J

(a1)
NT

)
≤ C max

i,t1,t2,t3
E

(∥∥∥Ż∗it1∥∥∥∥∥∥Ż∗it2∥∥∥∥∥∥Ż∗it3∥∥∥2
)

1
T 2VNT

T−2∑
t1=1

∑
t2=t1+t3−t2

T∑
t3=t2+1

α
η

1+η (t2 − t1)

≤ max
i,t

E

(∥∥∥Żitσit∥∥∥4
)

C

T 2VNT

T−2∑
t1=1

∑
t2=t1+t3−t2

T∑
t3=t2+1

α
η

1+η (t2 − t1)

.
K2

TVNT

1
T

T−2∑
t1=1

T−1∑
l=2

l2α
η

1+η (l) = O (K/T ) = o (1) .

By the Markov inequality, we have V J (a1)
NT = op (1) and then V J

(a1)
NT = op (1). For (a2) with

t1 < t2 < t3, we have
∣∣E (εit1εit2ε2it3)∣∣ ≤ 8αη/(1+η) (∆t3) ‖εit1εit2‖2+2η

∥∥ε2it3∥∥2+2η
, where ∆t3 =

t3 − t2. Then

E
∣∣∣V J (a2)

NT

∣∣∣ ≤ 64 max
i,ts

(
‖εitεis‖2+2η

)
max
i,t

(∥∥ε2it∥∥2+2η

)
× 1
NT 2VNT

N∑
i=1

∑
1≤t1<t2<t3≤T

E
(∣∣∣K̃i,t1t3∣∣∣ ∣∣∣K̃i,t2t3∣∣∣)α η

1+η (∆t3)

. max
i,t

E

(∥∥∥Żitσit∥∥∥4
)

1
NT 2VNT

N∑
i=1

∑
1≤t1<t2<t3≤T

α
η

1+η (∆t3) = O
(
K2/T

)
It follows that V J (a2)

NT = Op
(
K2/T

)
= op (1) by the Markov inequality.

Proof of (ii) Note that

E
(
Z4
i |X

)
=

16
T 4V2

NT

∑
1≤t1<t2≤T,1≤t5<t6≤T
1≤t3<t4≤T,1≤t7<t8≤T

K̃i,t1t2K̃i,t3t4K̃i,t5t6K̃i,t7t8E (εit1εit2εit3εit4εit5εit6εit7εit8)

≡ DJi2 + · · ·+DJi7, say,
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where DJi2, . . . , DJi7 denote the summations of terms with 2, . . . , 7 different time indices in the
expectation, respectively. Note that the expectation for any term with 8 distinct time indices
is 0 since {εit}Tt=1 is an MDS.

First, we consider the case with two different time indices (DJi2). We have

DJi2 =
16

T 4V2
NT

∑
1≤t1<t2≤T

K̃4
i,t1t2E

(
ε4it1ε

4
it2

)
≤ 16C2

∗K
4

T 4V2
NT

∑
1≤t1<t2≤T

A2
it1A

2
it2E

(
ε4it1ε

4
it2

)
= Op

(
K2T−2

)
= op (1) .

because of K̃2
i,ts ≤ K̃i,ttK̃i,ss ≤ C2

∗σ
2
itσ

2
itAitAis. Similarly, we can show thatDJi3 = Op

(
K2T−1

)
.

Second, we consider the case with four different time indices (DJi4). As we will see from
the proof of DJi7 below, the leading term in DJi4 is

DJ�i4 .
1

T 4V2
NT

∑
t6=s 6=l 6=q

(
K̃2
i,tsK̃2

i,lq + K̃i,tsK̃i,tlK̃i,lqK̃i,qs
)
E
(
ε2itε

2
isε

2
ilε

2
iq

)
≡ DJ∗�i41 +DJ�i42, say,

where 8 time indices form 4 different pairs. Let Q̆i ≡ Q−1
ż,iQw,iQ

−1
ż,i . For DJ�i41, we have

DJ�i41 ≤ max
i,tsql

{
E
(
ε2itε

2
isε

2
ilε

2
iq

)} 1
T 4V2

NT

(∑
1≤t,s≤T K̃

2
i,ts

)2

.
1

T 4V2
NT

(∑
1≤t,s≤T ŻitQ

−1
ż,iQw,iQ

−1
ż,i Żisσitσis

)2

=

 tr
(
Q

(σ)
ż,i Q̆iQ

(σ)
ż,i Q̆i

)
+ op (1)

N−1
∑N

i=1 tr
(
Q

(σ)
ż,i Q̆iQ

(σ)
ż,i Q̆i

)
+ op (1)

2

≤

maxi λ2
max (Qw,i) maxi λ4

max

(
Q−1
ż,i

)
maxi λ2

max

(
Q

(σ)
ż,i

)
mini λ2

min (Qw,i) mini λ4
min

(
Q−1
ż,i

)
mini λ2

min

(
Q

(σ)
ż,i

)
2

+ op (1) ≤ C <∞.

For DJ∗�i42, we have

DJ�i42 ≤ max
i,tsql

{
E
(
ε2itε

2
isε

2
ilε

2
iq

)} 1
T 4V2

NT

∑
t6=s 6=l 6=q

K̃i,tsK̃i,tlK̃i,lqK̃i,qs

.
1

T 4V2
NT

∑
t6=s 6=l 6=q

σisŻ
′
isQ̆iσ

2
itŻitŻ

′
itQ̆iσ

2
ilŻilQ̆iσ

2
iqŻiqQ̆iŻisσis

.
tr
(
Q

(σ)
ż,i Q̆iQ

(σ)
ż,i Q̆iQ

(σ)
ż,i Q̆iQ

(σ)
ż,i Q̆i

)
(1 + op (1))[

N−1
∑N

i=1 tr
(
Q

(σ)
ż,i Q̆iQ

(σ)
ż,i Q̆i

)]2
(1 + op (1))

= Op
(
K−1

)
<∞.

Now, we consider DJi7. Without loss of generality (WLOG), let s1 < · · · < s7 be the
rearranged time indices, and two tl’s take the same value s7. Otherwise, the expectation should

36



be 0 because {εit}Tt=1 is an MDS. Then following the proof of Lemma A.1 in Gao (2007), let
d1 be the first largest difference among {∆sj+1 = sj+1 − sj}6j=1 . Noting that E(

∏j∗

j=1εisj ) = 0,
we can apply the Davydov inequality to E

(
εis1εis2εis3εis4εis5εis6ε

2
is7

)
by separating the set of

time indices into two subsets {s1, . . . , sj∗} and {sj∗+1, . . . , s7}. Then we have∣∣E (εis1εis2εis3εis4εis5εis6ε2is7)∣∣ =
∣∣∣E (εis1εis2εis3εis4εis5εis6ε2is7)− E (∏j∗

j=1εisj

)
E
(∏6

j=j∗+1εisj ε
2
is7

)∣∣∣
≤ 8

∥∥∥∏j∗

j=1εisj

∥∥∥
2+2η

∥∥∥ε2is7∏6
j=j∗+1εisj

∥∥∥
2+2η

α
η

1+η (d1)

and

|DJNT,7| ≤
128C2

7

T 4V2
NT

6∑
j∗=1

∑
1≤s1<···<s7≤T

∆sj∗+1=d1

α
η

1+η (d1)
∥∥∥Ż∗is7∥∥∥2∏6

l=1

∥∥∥Ż∗isl∥∥∥ ≡ 6∑
j∗=1

DJ i7j∗ ,

where C7 ≡ maxi,s1,...,s7 maxj∗=1,...,6

(∥∥∥∏j∗

j=1εisj

∥∥∥
2+2η

∥∥∥∏6
j=j∗+1εisj ε

2
is7

∥∥∥
2+2η

)
and

DJ i7j∗ =
128C2

7

T 4V2
NT

∑
1≤s1<···<s7≤T,∆sj∗+1=d1

α
η

1+η (d1)
∥∥∥Ż∗is7∥∥∥2∏6

l=1

∥∥∥Ż∗isl∥∥∥
for j∗ = 1, . . . , 6. We show that DJ i7j∗ = Op

(
K2T−3

)
for all j∗ = 1, . . . , 6. For example, when

j∗ = 2, we have

E
(
DJ i72

)
≤ max

i,s1,...,s7
E

(∥∥∥Ż∗is7∥∥∥2∏6
l=1

∥∥∥Ż∗isl∥∥∥) 128C2
7

T 4V2
NT

∑
1≤s1<s2≤···≤s7<T , ∆s3=d1

α
η

1+η (d1)

.
K4

T 4V2
NT

T−5∑
s2=2

T−4∑
d1=2

s2−1∑
s1=max{s2−d1+1,1}

s2+2d1∑
s4=s2+d1+1

s4+d1∑
s5=s4+1

s5+d1∑
s6=s5+1

min{s6+d1−1,T}∑
s7=s6+1

α
η

1+η (d1)

.
K4

T 4V2
NT

T∑
s=2

T∑
d=1

d5
1α

η
1+η (d1) = O

(
K2T−3

)
.

Similarly, DJ i7j∗ = Op
(
K2T−3

)
for j∗ = 1, 3, . . . , 6. It follows that DJi7 = op (1).

For DJi6, WLOG, let s1 < · · · < s6 be the rearranged time indices. Then we have: (a)
three tj ’s take the same value s6; (b) two tl’s take the same value s6, two tl’s take sj for
some j < 6, and remaining 4 tl’s take different values. Without confusion, we decompose
DJi6 = DJ

(a)
i6 + DJ

(b)
i6 according to two subcases (a) and (b). For subcase (a), following

the proof of DJi7, we have DJ
(a)
i6 = Op

(
K2T−3

)
. For subcase (b), we further decompose

DJ
(b)
i6 ≡

∑5
j=1DJ

(b)
i6j , where DJ (b)

i6j corresponds to the term with two t’s take the same value

sj for j = 1, . . . , 5. We first consider DJ (b)
i65. Let d1 be the first largest difference among

∆s2,∆s3,∆s4, and ∆s5. Then we have 4 subsubcases according to d1 = ∆sj∗ for j∗ = 1, . . . , 4,
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respectively. By Davydov inequality, we have∣∣E (εis1εis2εis3εis4ε2is5ε2is6)∣∣ =
∣∣∣E (εis1εis2εis3εis4ε2is5ε2is6)− E (∏j∗

j=1εisj

)
E
(
ε2is5ε

2
is6

∏4
j=j∗+1εisj

)∣∣∣
≤ 8

∥∥∥∏j∗

j=1εisj

∥∥∥
2+2η

∥∥∥ε2is5ε2is6∏4
j=j∗+1εisj

∥∥∥
2+2η

α
η

1+η (d1) ,

where we separate {s1, . . . , s6} into {s1, . . . , sj∗} and {sj∗+1, . . . , s6}. Let

C65 ≡ max
i,s1,...,s6

max
j∗=1,...,4

{∥∥∥∏j∗

j=1εisj

∥∥∥
2+2η

∥∥∥ε2is5ε2is6∏4
j=j∗+1εisj

∥∥∥
2+2η

}
.

Then following the proof of DJi7, we have

E
∣∣∣DJ (b)

i65

∣∣∣ ≤ 8C65 max
i,s1,...,s6

E

(∥∥∥Ż∗is5∥∥∥2 ∥∥∥Ż∗is6∥∥∥2∏4
l=1

∥∥∥Ż∗isl∥∥∥)× 4∑
j∗=1

EDJ
(b)
i65,j∗ .

where EDJ (b)
i65,j∗ ≡

K4

T 4V2
NT

∑
1≤s1<···<s6≤T ,∆sj∗+1=d1

αη/(1+η) (d1) for j∗ = 1, 2, 3, 4. For EDJ (b)
i65,1,

we have

EDJ
(b)
i65,1 =

K4

T 4V2
NT

T−6∑
s1=1

T−6∑
d1=2

s1+2d1∑
s3=s1+d1+1

s3+d1∑
s4=s3+1

s4+d1∑
s5=s4+1

T∑
s6=s5+1

α
η

1+η (d1)

≤ K4

T 4V2
NT

T∑
s1=1

T∑
d1=1

T∑
s6=1

d3
1α

η
1+η (d1) = O

(
K2/T 2

)
.

Similarly, we have EDJ (b)
i65,j∗ = O

(
K2T−2

)
for all j∗ = 2, . . . , 4. It follows that E

∣∣∣DJ (b)
i65

∣∣∣ =

O
(
K2T−2

)
and DJ (b)

i65 = Op
(
K2T−2

)
by Markov inequality. Now, we turn to the term DJ

(b)
i64.

Let d1 and d2 be the first and second largest difference among ∆s2,∆s3,∆s4,∆s5 and ∆s6.
We consider two subsubcases for DJ (b)

i64: (b1) d1 6= ∆s5 and (b2) d1 = ∆s5. Let DJ (b)
i641 and

DJ
(b)
i642 be the corresponding terms for (b1) and (b2). Then we have DJ (b)

i64 = DJ
(b)
i641 +DJ

(b)
i642.

Following the proof of DJi7, we have DJ
(b)
i641 = Op

(
K2/T 2

)
. For the subsubcase (b2), it

must be d2 = ∆sj , where j = 2, 3, 4,or 6 since d1 = ∆s5. We can decompose DJ
(b)
i642 =

DJ
(b)
i6422 +DJ

(b)
i6423 +DJ

(b)
i6424 +DJ

(b)
i6426, where DJ (b)

i642j is the term with d2 = ∆sj . For DJ (b)
i6422,

we apply Davydov inequality to get that∣∣E (εis1εis2εis3ε2is4εis5ε2is6)∣∣ =
∣∣E (εis1εis2εis3ε2is4εis5ε2is6)− E (εis1)E

(
εis2εis3ε

4
is4εis5ε

2
is6

)∣∣
≤ 8 ‖εis1‖2+2η

∥∥εis2εis3ε2is4εis5ε2is6∥∥2+2η
α

η
1+η (d2)

by separating {s1, . . . , s6} into {s1} and {s2, . . . , s6} according to the second largest increment.
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Let C64 ≡ maxi,s1,...,s6
{
‖εis1‖2+2η

∥∥εis2εis3ε2is4εis5ε2is6∥∥2+2η

}
. Then we have

E
∣∣∣DJ (b)

i6422

∣∣∣ ≤ C64 max
i,s1,...,s6

E

(∥∥∥Ż∗is4∥∥∥2 ∥∥∥Ż∗is5∥∥∥∥∥∥Ż∗is6∥∥∥2∏3
l=1

∥∥∥Ż∗isl∥∥∥) 1
T 4V2

NT

∑
1≤s1<···<s6≤T
∆s2=d2,∆s5=d1

α
η

1+η (d2)

.
K2

T 4V2
NT

T−6∑
s1=1

d1∑
d2=2

s1+2d2∑
s3=s1+d2+1

s3+d2∑
s4=s3+1

T−4∑
d1=2

min{s4+d1+d2,T}∑
s6=s4+d1+1

α
η

1+η (d2)

≤ TK2

T 4V2
NT

T∑
d1=2

d1∑
d2=1

d3
2α

η
1+η (d2) = O

(
K2/T 2

)
and DJ

(b)
i6422 = Op

(
K2/T 2

)
by Markov inequality. Similarly, we have DJ (b)

i642j = Op
(
K2/T 2

)
for j = 3, 4, 6. Then DJ

(b)
i642 = Op

(
K2/T 2

)
. It follows that DJ (b)

i64 = Op
(
K2/T 2

)
. In the

same way, we can show that DJ (b)
i6j = Op

(
K2T−2

)
for j = 1, 2, 3. Then we have 4 subsubcases

according to d1 = ∆sj∗ for j∗ = 1, . . . , 4, respectively.
Similarly, we can show that DJi5 = Op

(
K2T−3

)
+Op

(
K2T−2

)
+Op

(
K2T−1

)
= op (1).

Proposition B.2 Under Assumptions 1-4,, we have B̂NT − BNT = op(K1/2).

Proof. Note that ε̂r,it = ûit − ûi = εit − ε̄i + γNT ğ
(c)
∆,it − Ẋ ′itν̆NT under H1,γNT , where

ğ
(c)
∆,it = ğ∆,it − ğ∆,i, Ẋit = Xit − X̄i, ε̄i, ğ∆,i and X̄i are time series average of εit’s, m̆∆,it’s and
Xit’s for the ith individual, respectively. Then we can write

B̂NT =
1√
NT

N∑
i=1

T∑
t=1

Ki,tt
(
εit − ε̄i + γNT ğ

(c)
∆,it − Ẋ

′
itν̆NT

)2
=

10∑
l=1

B̂NTl,

where

B̂NT1 ≡ 1√
NT

∑N
i=1

∑T
t=1Ki,ttε2

it, B̂NT2 ≡ 1√
NT

∑N
i=1

∑T
t=1Ki,ttε̄2

i ,

B̂NT3 ≡
γ2
NT√
NT

∑N
i=1

∑T
t=1Ki,tt

(
ğ

(c)
∆,it

)2
, B̂NT4 ≡ 1√

NT

∑N
i=1

∑T
t=1Ki,ttν̆ ′NT ẊitẊ

′
itν̆NT ,

B̂NT5 ≡ −2√
NT

∑N
i=1

∑T
t=1Ki,ttεitε̄i, B̂NT6 ≡ 2γNT√

NT

∑N
i=1

∑T
t=1Ki,ttεitğ

(c)
∆,it,

B̂NT7 ≡ 2√
NT

∑N
i=1

∑T
t=1Ki,ttεitẊ ′itν̆NT , B̂NT8 ≡ −2γNT√

NT

∑N
i=1

∑T
t=1Ki,ttε̄iğ

(c)
∆,it,

B̂NT9 ≡ −2√
NT

∑N
i=1

∑T
t=1Ki,ttε̄iẊ ′itν̆NT , B̂NT10 ≡

γ2
NT√
NT

∑N
i=1

∑T
t=1Ki,ttğ

(c)
∆,itẊ

′
itν̆NT .

We complete the proof of (iv) by showing that B̂NT1−BNT = op
(
K1/2

)
, and B̂NTs = op

(
K1/2

)
for s = 2, . . . , 10.

First, we have shown that J̃ (b)
NT = B̂NT1 − BNT = op

(
K1/2

)
in the proof of (i) of Theorem

3.2. Second, we have B̂NT2 ≤ 1
N1/2T

∑N
i=1 ε̄

2
i tr(Ki) = 1

N1/2

∑N
i=1 ε̄

2
i tr(Q

−1
ż,iQw,i) ≤ c−1

ż c̄wK ×(
1

N1/2

∑N
i=1 ε̄

2
i

)
= O(N1/2KT−1) = op

(
K1/2

)
. Third, B̂NT3 ≤ C∗γ2

NTKN
1/2 1

NT

∑N
i=1

∑T
t=1Ait[ğ

(c)
∆,it]

2
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= Op
(
KN1/2γ2

NT

)
= op

(
K1/2

)
. Fourth, B̂NT4 ≤ C∗KN

1/2 ‖ν̆NT ‖2 1
NT

∑N
i=1

∑T
t=1Ait

∥∥∥Ẋit

∥∥∥2

= Op(KN1/2 ‖ν̆NT ‖2) = op
(
K1/2

)
. By the Cauchy-Schwarz inequality, we can show that

B̂NTs = op
(
K1/2

)
for s = 5, . . . , 10.

Proposition B.3 Under Assumptions 1-4, we have V̂NT /VNT = 1 + op (1) .

Proof. We consider the following decomposition

V̂NT − VNT =
2

NT 2

N∑
i=1

∑
1≤s 6=t≤T

K2
i,ts

(
ε̂2
r,itε̂

2
r,is − ε2

itε
2
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)
+

2
NT 2

N∑
i=1

∑
1≤s 6=t≤T

K2
i,ts

(
ε2
itε

2
is − σ2

itσ
2
is

)
≡ ∆V̂(a)

NT + ∆V̂(b)
NT , say.

We first show that ∆V̂(a)
NT = op (K). Let ε̆R,it = ε̄i+γNT ğ

(c)
∆,it−Ẋ ′itν̆NT . It is straightforward

to verify that

(i)
1
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T∑
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ε̆2
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)
and (ii)

1
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T∑
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ε̆4
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)
. (A.4)

We rewrite ∆V̂(a)
NT as
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2
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K2
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2
it + 4ε̆R,itε̆2
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2
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)
≡

5∑
s=1

∆V̂(a)
NT,s, say,

by the symmetricity between time indices t and s.
First, we can decompose ∆V̂(a)

NT,1 as follows
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8
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T∑
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T∑
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i,tsε

2
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T∑
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T∑
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2
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− 8
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T∑
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T∑
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2
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′
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8
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N∑
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T∑
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3
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= ∆V̂(a)
NT,11 + ∆V̂(a)

NT,12 + ∆V̂(a)
NT,13 + ∆V̂(a)

NT,14, say.
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By Cauchy-Schwarz inequality, we have

∣∣∣∆V̂(a)
NT,14

∣∣∣ ≤ 8
T

(
1
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T∑
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6
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(
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)
= Op
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)
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by (i) in (A.4) and the fact that 1
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6
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4
(

1
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∑N
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∑T
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4
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6
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)
=

Op
(
K4
)
, where the term in parentheses is Op (1) by the Markov inequality and moment con-

ditions on Xit and εit. For ∆V̂(a)
NT,11, we first define Vε,i = T−1/2

∑T
t=1 ŻitŻ

′
itεit. Then we

have ∣∣∣∆V̂(a)
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∣∣∣ =

∣∣∣∣∣ 8
NT 2
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2
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=
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T
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∣∣∣∣∣
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, say,
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where Qε,i = T−1
∑T

s=1 ŻisŻ
′
isε

2
is and Q̆i = Q−1

ż,iQw,iQ
−1
ż,i . Note that by Lemma A.3
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N∑
i=1

tr
(
Q̆iQ

(ε)
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ŻisŻ
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4
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+ op (1), which can be

shown as the proof of Lemma A.5 in the online supplementary material to Su, Wang and Jin
(2018). Second, ∆V̂(a)
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′
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(
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It follows that ∆V̂(a)
NT,11 = Op

(
K2/T

)
= op (K). For ∆V̂(a)

NT,12, we have
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(
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)
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Similarly, we can show that ∆V̂(a)
NT,13 = Op

(
K2T−1/2 ‖νNT ‖

)
= op (K) . It follows that ∆V̂(a)

NT,1 =
op (K).

Second, for ∆V̂(a)
NT,2, by Cauchy-Schwarz inequality, we have
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8
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Similarly, we can show ∆V̂(a)
NT,s = op (K) for s = 3, 4, 5 by Cauchy-Schwarz inequality. Hence,

∆V̂(a)
NT = op (K) .
For ∆V̂(b)

NT , let ε̇2,it ≡ ε2it − 1. Then we can write
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NT , say.
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For ∆V̂(b1)
NT , we have E(∆V̂(b1)

NT |X) = 0 and
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∑
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∑
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by following the proof of V J2. It follows that ∆V̂(b1)
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= op (K). Then we show that ∆V̂(b)
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Proof of Corollary 3.3. Under the global alternative H1, we have ν̆NT = ν∆,NT + νNT =
o (1) +Op((NT )−1/2) = op (1). Then
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; (ii) ΓNT,1 = Φ∆ + op (1) ; (iii) ΓNT,3 ≤ ‖ν̆NT ‖2 = Op((NT )−1) + op (1).

Then by Cauchy-Schwarz inequality, we have |ΓNT,l| = op (1) for l = 4, 5, 6. It follows that
ΓNT = Φ∆ + op (1) and P (ΓNT ≥ Φ∆/2) → 1. In addition, we can still show that V̂NT =
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V0 + op (K) for some V0 = O(K) and B̂NT = Op
(
N1/2K

)
. It follows that
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Consequently, we have P
(
ĴNT > dNT

)
→ 1 as (N,T )→∞ for any dNT = o

(
TN1/2K−1/2

)
.�

Proof of Theorem 3.4. Let P ∗ denote the probability measure induced by the wild bootstrap
conditional on the original sample WNT ≡ {(Xit, Yit) : i = 1, . . . , N, t = 1, . . . , T}. Let E∗

and Var∗ denote the expectation and variance w.r.t. P ∗. Let OP ∗ (·) and oP ∗ (·) denote the
probability order under P ∗; e.g., bNT = oP ∗ (1) if for any ε > 0, P ∗ (‖bNT ‖ > ε) = oP (1). We
will use the fact that bNT = oP (1) implies that bNT = oP ∗ (1) .

Observing that Y ∗it = X ′itβ̂FE + α̂i + ε∗r,it, the null hypothesis of homogenous and time-
invariant coefficients is maintained in the bootstrap world. Given WNT , ε

∗
r,it are independent

across i and t, and independent of Xjs for all i, t, j, and s, because the latter objects are fixed in

the fixed-design bootstrap world. Let F∗t be the σ-field generated by
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∗
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r,it. These observations greatly simplify the proofs in the bootstrap world.
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.

Let Γ∗NT , B∗NT , V∗NT , B̂∗NT , and V̂∗NT be the bootstrap analogues of ΓNT , BNT , VNT , B̂NT ,
and V̂NT , respectively. Then

Γ∗NT =
1

NT 2

N∑
i=1

(
ε∗r,it −Xiν

∗
NT

)′Ki (ε∗r,it −Xiν
∗
NT

)
=

1
NT 2

N∑
i=1

ε∗′r,iKiε∗r,i −
2

NT 2

N∑
i=1

ε∗′r,iKiXiν
∗
NT +

1
NT 2

N∑
i=1

ν∗′NTX
′
iKiXiν

∗
NT

≡ Γ(∗1)
NT − 2Γ(∗2)

NT + Γ(∗3)
NT , say.

We decompose Ĵ∗NT as follows
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=
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In particular, we can show that: (i) J∗NT = (N1/2TΓ∗(1)
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d∗→ N (0, 1), where
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NT = oP ∗ (1) for s = 2, 3; (iii) B̂∗NT − B∗NT = oP ∗(K1/2); (iv)

V̂∗NT /V∗NT = 1 + oP ∗ (1).
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We only outline the proof of (i) as we can follow the proofs of Theorems 3.2 to show (ii)-(iv).
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First,
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ż,iQ

−1
ż,iQw,iQ

−1
ż,iQ

(ε̂)
ż,iQ

−1
ż,iQw,iQ

−1
ż,i

)]2

≤ 1
V∗2NT

[
λ2

max

(
Q−1
ż,iQw,iQ

−1
ż,i

)
λmax

(
Q

(ε̂)
ż,i

)
tr
(
Q

(ε̂)
ż,i

)]2

≤ 1
V∗2NT

[
λ2

max

(
Q−1
ż,iQw,iQ

−1
ż,i

)
λ2

max

(
Q

(ε̂)
ż,i

)
K
]2

=
1

OP ∗ (K2)
Op
(
K2
)

= OP ∗ (1) .

where Q(ε̂)
ż,i = T−1

∑T
t=1 ŻitŻ

′
itε̂

2
it. Second,

DJ∗i4b =
1

T 4V∗2NT

∑
t6=s 6=l 6=q

K̃i,tsK̃i,tlK̃i,lqK̃i,qs

.
1

T 4V∗2NT

∑
t6=s 6=l 6=q

ε̂r,isŻ
′
isQ̆iε̂

2
r,itŻitŻ

′
itQ̆iε̂

2
r,ilŻilQ̆iε̂

2
r,iqŻiqQ̆iŻisε̂r,is

.
1

V∗2NT
tr
(
Q

(ε̂)
ż,i Q̆iQ

(ε̂)
ż,i Q̆iQ

(ε̂)
ż,i Q̆iQ

(ε̂)
ż,i Q̆i

)
≤ 1

V∗2NT
λ3

max

(
Q

(ε̂)
ż,i

)
tr
(
Q

(ε̂)
ż,i

)
λ4

max

(
Q−1
ż,iQw,iQ

−1
ż,i

)
≤ 1

V∗2NT
λ3

max

(
Q

(ε̂)
ż,i

)
Kλmax

(
Q

(ε̂)
ż,i

)
λ4

max

(
Q−1
ż,iQw,iQ

−1
ż,i

)
= OP ∗

(
K−1

)
<∞.

where Q̆i = Q−1
ż,iQw,iQ

−1
ż,i . It follows that DJ∗i4 = OP ∗ (1) + OP ∗

(
K−1

)
= OP ∗ (1). Similarly,

we can show that DJ∗i3 < C ≤ ∞ conditional on WNT .�

47



Appendix B: Proofs for Lemmas and Sketch Proofs for Section 4

This appendix provides the proofs of technical lemmas which are used in the proofs of the
main results in Section 3, gives assumptions and the sketch of proofs for main theorems in
Section 4.

C Proofs for lemmas

Proof for Lemma A.1. Let g(2) = (g1, . . . , gd)
′ . Then g = (g0,g(2))′ and

‖g‖2i = E

[
1
T

T∑
t=1

(g (τt)
′ X̃it)(X̃ ′itg (τt))

]

=
1
T

T∑
t=1

[
g(2) (τt)

′E
(
XitX

′
it

)
g(2) (τt) + g2

0 (τt)
]

� 1
T

T∑
t=1

g(2) (τt)
′ g(2) (τt) +

1
T

T∑
t=1

g2
0 (τt)

=
d∑
l=1

θ′l

[
1
T

T∑
t=1

BK (τt)BK (τt)
′

]
θl + θ′0

[
1
T

T∑
t=1

BK
−1 (τt)BK

−1 (τt)
′

]
θ0

=
d∑
l=1

θ′lθl + θ′0θ0 + o (1) = ‖θ‖2 + o (1)

by Assumption 1(v) and the fact that T−1
∑T

t=1B
K (τt)BK (τt)

′ = IK + o (K/T ) (see Lemma
C.4.(i) in Dong and Linton (2018)).

Proof for Lemma A.2. The proofs of (i) and (ii) are analogous to that of Lemma A.2(i)-
(ii) in Su, Wang and Jin (2018). The only difference is that we use Cosine functions as basis
function. One is readily to modify their proofs to obtain the above claims for our orthonormal
basis functions under the conditions stated in Assumption 1.

Proof for Lemma A.3. We first prove (i). Recall that Zit = (B−1,t, Bt ⊗Xit)
′ and

Żit = Zit − Z̄i. Write

Qż,i =
1
T

T∑
t=1

Z ′itZit − Z̄ ′iZ̄i ≡ Q
(1)
ż,i −Q

(2)
ż,i , say. (A.1)

Let $ = ($′0, $
′
1, . . . , $

′
d)
′ =

(
$′0, $

(2)′)′ with $0 ∈ RK−1 and $l ∈ RK for l = 1, . . . , d,
and ‖$‖ ≤ C ≤ ∞. Let gl (τ,$l) = $′lB

K (τ) and g0 (τ,$0) = $′0B
K
−1 (τ). Let g$ =(

g0 (τ,$0) ,g′
$(2)

)′
, where g$(2) = (g1 (τ,$1) , . . . , gd (τ,$d))

′.
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First, we show that λmax (Qż,i) is bounded by some positive number uniformly in i. By
Lemmas A.1 and A.3, we have that uniformly in i and $,

$′Q
(1)
ż,i$ =

1
T

T∑
t=1

[
g$ (τt)

′ X̃it

]2
=

1
T

T∑
t=1

E
[
g$ (τt)

′ X̃it

]2
(1 + op (1)) � ‖$‖2 .

Then the largest eigenvalue of Q(1)
ż,i and thus Qż,i is bounded above by some positive number

c̄ż uniformly in i with probability 1− o(N−1).
Second, we prove that λmin (Qż,i) is bounded away from zero uniformly in i. By Lemma

A.2, $′Q(2)
ż,i$ =[ 1

T

∑T
t=1 g$ (τt)

′ X̃it]2 = [ 1
T

∑T
t=1 g$ (τt)

′EX̃it]2 (1 + o (1)) uniformly in i and

$. By Cauchy-Schwarz inequality, we have [ 1
T

∑T
t=1 g$ (τt)

′EX̃it]2 ≤ 1
T

∑T
t=1

∥∥∥EX̃it

∥∥∥2
×

1
T

∑T
t=1 ‖g$ (τt)‖2 ≤ C ‖$‖2 < ∞ uniformly in i and $ because of 1

T

∑T
t=1 ‖g$ (τt)‖2 =

‖$‖2 (1 + o (1)) (see the proof of Lemma A.1. It follows that

$′Qż,i$ =
1
T

T∑
t=1

E
{

[g$ (τt)
′ X̃it]2

}
−

[
1
T

T∑
t=1

g$ (τt)
′EX̃it

]2

+ op (1) ≡ Ai,$ + op (1) .

We want to show that Ai,$ ≥ C ‖$‖2 for some positive constant. Recall that µi (τt) = EXit.
For any τ ∈ [0, 1], let Ωi (τ) ≡Var(Xit) = Ξi (τ) − µi (τ)µi (τ)′ and µ̃i (τ) ≡ E(X̃it) = 1

µi (τ)

, Ξ̃i (τ) ≡ E(X̃itX̃
′
it) =

 1 µi (τ)′

µi (τ) Ξi (τ)

, and Ω̃i (τ) ≡Var
(
X̃it

)
=

 0 0d×1

0d×1 Ωi (τ)

.

Then we have

Ai,$ =
∫ 1

0
g$ (τ)′ Ξ̃i (τ) g$ (τ) dτ −

{∫ 1

0
g$ (τ)′i µ̃i (τ) dτ

}2

+ o (1)

=
∫ 1

0
g′
$(2) (τ) Ωi (τ) g$(2) (τ) dτ

+
∫ 1

0

[
g′$ (τ) µ̃i (τ)

]2
dτ −

(∫ 1

0
g′$ (τ) µ̃i (τ) dτ

)2

+ o (1)

= A
(1)
i,$ +A

(2)
i,$ + o (1)

For the first term, we have

A
(1)
i,$ =

∫ 1

0
g′
$(2) (τ) Ωi (τ) g$(2) (τ) dτ = $′

 0(K−1)×(K−1) 0(K−1)×dK

0dK×(K−1)

∫ 1
0

(
Ωi (τ)⊗B (τ)B (τ)′

)
dτ

$.

Let µi (τ) = (B (τ)⊗ µi (τ))′ and µ
(c)
i (τ) =µi (τ)−

∫ 1
0 µi (τ) dτ. Define

Bi=

 ∫ 1
0 B−1 (τ)B−1 (τ)′ dτ

∫ 1
0 B−1 (τ)µ(c)

i (τ)′ dτ∫ 1
0 µ

(c)
i (τ)B−1 (τ)′ dτ

∫ 1
0 µ

(c)
i (τ)µ(c)

i (τ)′ dτ


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Then for the second term, we have A(2)
i,$ = $′Bi$. Since

∫ 1
0 B−1 (τ)B−1 (τ)′ dτ = IK−1, it

follows that

A
(1)
i,$ +A

(2)
i,$

= $′

 IK−1

∫ 1
0 B−1 (τ)µ(c)

i (τ)′ dτ∫ 1
0 µ

(c)
i (τ)B−1 (τ)′ dτ

∫ 1
0 µ

(c)
i (τ)µ(c)

i (τ)′ dτ +
∫ 1

0

(
Ωi (τ)⊗B (τ)B (τ)′

)
dτ

$

= $′D1i

 IK−1 0(K−1)×dK

0dK×(K−1) D0i

D′1i$

where D1i =

 IK−1 0

−
∫ 1

0 µ
(c)
i (τ)B−1 (τ)′ dτ IKd

, D0i =
∫ 1

0

(
Ωi (τ)⊗B (τ)B (τ)′

)
dτ + D̄0i,

and

D̄0i =
∫ 1

0
µ(c)
i

(τ)µ(c)
i

(τ)′ dτ −
∫ 1

0
µ(c)
i

(τ)B−1 (τ)′ dτ
∫ 1

0
B−1 (τ)µ(c)

i
(τ)′ dτ.

Noting that D1iD
′
1i = I, we have A(1)

i,$ +A
(2)
i,$≥λmin (D0i)$′D1iD

′
1i$ =λmin (D0i) ‖$‖2

A
(1)
i,$ +A

(2)
i,$≥λmin (D0i)$′D1iD

′
1i$ =λmin (D0i) ‖$‖2

≥ λmin

(
D̄0i

)
‖$‖2 + λmin

[∫ 1

0

(
Ωi (τ)⊗B (τ)B (τ)′

)
dτ

]
‖$‖2

by Weyl inequality. Noting that

λmin

[∫ 1

0

(
Ωi (τ)⊗B (τ)B (τ)′

)
dτ

]
= inf
‖C‖=1,C∈Rd×K

∫ 1

0
vec (C)′

(
Ωi (τ)⊗B (τ)B (τ)′

)
vec (C) dτ

= inf
‖C‖=1

∫ 1

0
B (τ)′C ′Ωi (τ)CB (τ) dτ

≥ λmin (Ωi (τ))
∫ 1

0
tr
[
B (τ)′C ′CB (τ)

]
dτ

= λmin (Ωi (τ)) tr
[
C ′C

(∫ 1

0
B (τ)B (τ)′ dτ

)]
= λmin (Ωi (τ)) tr

(
C ′C

)
= ‖C‖2 λmin (Ωi (τ)) = λmin (Ωi (τ)) ≥ min

i
[λmin (Ωi (τ))]

we are left to show that D̄0i is semi-positive definite (s.p.d.). Define

µ(c)
i,P

(τ) =
∫ 1

0
µ(c)
i

(τ)B−1 (τ)′ dτ
{∫ 1

0
B−1 (τ)B−1 (τ)′ dτ

}−1

B−1 (τ)
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Clearly, by the fact that
∫ 1

0 B−1 (τ)B−1 (τ)′ dτ = IK−1, we have

µ(c)
i,P

(τ) =
∫ 1

0
µ(c)
i

(τ)B−1 (τ)′ dτB−1 (τ) ,∫ 1

0
µ(c)
i,P

(τ)µ(c)
i,P

(τ)′ dτ =
∫ 1

0
µ(c)
i

(τ)B−1 (τ)′ dτ
(∫ 1

0
B−1 (τ)B−1 (τ)′ dτ

)∫ 1

0
B−1 (τ)µ(c)

i
(τ)′ dτ

=
∫ 1

0
µ(c)
i

(τ)B−1 (τ)′ dτ
∫ 1

0
B−1 (τ)µ(c)

i
(τ)′ dτ.

Observing that∫ 1

0
µ(c)
i

(τ)µ(c)
i,P

(τ)′ dτ =
∫ 1

0
µ(c)
i

(τ)B−1 (τ)′ dτ
∫ 1

0
B−1 (τ)µ(c)

i
(τ)′ dτ =

∫ 1

0
µ(c)
i,P

(τ)µ(c)
i,P

(τ)′ dτ

we can write D̄0i as

D̄0i =
∫ 1

0

[
µ(c)
i

(τ)− µ(c)
i,P

(τ)
] [
µ(c)
i

(τ)− µ(c)
i,P

(τ)
]′
dτ.

Clearly, D̄0i is s.p.d. and λmin

(
D̄0i

)
≥ 0.

(ii) The proof of (ii) is much simpler than that of (i). It is omitted here.
(iii)-(iv) The proofs of (iii) and (iv) are analogous to that of (i) and thus are omitted. We

can replace Xit by σitXit, or εitXit and apply Assumption 1(vi) in place of Assumption (v).
Noting that Var(εitXit) =Var(σitXit). Assumption 1(v) and moment conditions on εitXit are
suffice to the proof of (v).

Proof for Lemma A.4. Since the proofs for (i)-(ii) are similar, we only show (i). Note
that 1

NT

∑N
i=1

∑T
t=1 r

2
g,it = 1

NT

∑N
i=1

∑T
t=1 (rf,it +X ′itrβ,it)

2 ≤ 2
NT

∑N
i=1

∑T
t=1X

′
itrβ,itrβ,itXit+

2
NT

∑N
i=1

∑T
t=1 r

2
f,it ≤ supτ∈[0,1] r

2
f,i (τ) + supτ∈[0,1] ‖rβ,i (τ)‖2 2

NT

∑N
i=1

∑T
t=1 ‖Xit‖2 = O

(
K−2κ

)
+Op

(
K−2κ

)
Op (1) = Op

(
K−2κ

)
by Assumption 3 in Newey (1997).

Proof for Lemma A.5. (i) First, we have

VNT =
2

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

K2
i,tsσ

2
isσ

2
it −

2
NT 2

N∑
i=1

T∑
t=1

K2
i,ttσ

4
it ≡ VNT,1 − VNT,2, say.

For VNT,1, we have

VNT,1 =
2

NT 2

N∑
i=1

T∑
t=1

T∑
s=1

tr
(
Q−1
ż,iQw,iQ

−1
ż,i ŻisŻ

′
isσ

2
isQ
−1
ż,iQw,iQ

−1
ż,i Ż

′
itŻ
′
itσ

2
it

)
=

2
N

N∑
i=1

tr
(
Qw,iQ

−1
ż,iQ

(σ)
ż,i Q

−1
ż,iQw,iQ

−1
ż,iQ

(σ)
ż,i Q

−1
ż,i

)
≤ 2K max

i
λ2

max (Qw,i) max
i
λ4

max

(
Q−1
ż,i

)
max
i
λ2

max

(
Q

(σ)
ż,i

)
= 2Kc̄2

ż,σc
−4
ż c̄w = Op (K)
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by Lemma A.3, the repeatedly use of the rotation property of trace operator and two in-
equalities: (i) tr(A) ≤ nλmax (A) for any n × n symmetric positive definite matrix A and (ii)
λmax (BC) ≤ λmax (B)λmax (C) for any symmetric p.s.d matrices B and C. For VNT,2, we
have

VNT,2 =
2

NT 2

N∑
i=1

T∑
t=1

tr
(
Q−1
ż,iQw,iQ

−1
ż,i ŻitŻ

′
itQ
−1
ż,iQw,iQ

−1
ż,i ŻitŻ

′
itσ

4
it

)
≤ max

i
λ4

max

(
Q−1
ż,i

)
max
i
λ2

max (Qw,i)
2

NT 2

N∑
i=1

T∑
t=1

tr
(
ŻitŻ

′
itŻitŻ

′
itσ

4
it

)
≤

2
[
c−4
ż c̄2

w + op (1)
]

NT 2

N∑
i=1

T∑
t=1

∥∥∥Żit∥∥∥4
σ4
it

≤ CK2

T

1
NT

N∑
i=1

T∑
t=1

A2
itσ

4
it = O

(
K2/T

)
= op (K) .

where we use the fact that
∥∥∥Żit∥∥∥2

≤ 2KAit in the last inequality. It follows that VNT =

Op (K) +Op
(
K2/T

)
= Op (K) .

(ii) Note thatKi,tt = Ż ′itQ
−1
ż,iQw,iQ

−1
ż,iZ

′
iMιT Żit ≤ λ2

max

(
Q−1
ż,i

)
λmax (Qw,i)

∥∥∥Żit∥∥∥2
≤ c̄wc−2

ż

∥∥∥Żit∥∥∥2

uniformly in i and t. Similarly, Ki,tt ≥ λ2
min

(
Q−1
ż,i

)
λmin (Qw,i)

∥∥∥Żit∥∥∥2
≥ c̄−2

ż cw

∥∥∥Żit∥∥∥2
uniformly

in i and t. It follows BNT � 1√
NT

∑N
i=1

∑T
t=1

∥∥∥Żit∥∥∥2
σ2
it = Op

(
KN1/2

)
.

D The sketch of proofs for main results in Section 4

In this section, we give some additional assumptions for the tests for stability of heterogeneous
coefficients and for homogeneity of time-varying coefficients. Since the proofs for Theorems 4.3
and 4.1 are similar to that of Theorem 3.1, we provide the sketch of the proofs.

D.1 Test for the stability of heterogeneous coefficients

To start, we first study the behavior of ûit under Hs1,γNT . By the definition of β̄P,i, we still
have we have β̄P,i = βi under Hs1,γNT and

β̂i − βi = γNT
(
X ′iMιTXi

)−1
X ′iMιT g∆,i +

(
X ′iMιTXi

)−1
X ′iMιT εi

= γNT β̄∆i + γNT ν∆i,T + νi,T ,
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where β̄∆i = γNT (E (X ′iMιTXi))
−1E (X ′iMιT g∆,i), ν∆i,T = β̂∆i,T−β̄∆i with β̂∆i,T = (X ′iMιTXi)

−1

×X ′iMιT g∆,i and νi,T = (X ′iMιTXi)
−1X ′iMιT εi. Then

ûit =
(
εit −X ′itνi,T

)
+ αi + γNT ğ∆,it − γNTX ′itν∆i,T and (A.1)

ûi = ~εi + αiιT + γNT ğ∆,i − γNTXiν∆i,T (A.2)

where ~εit = εit −X ′itνi,T , ~εi = (~εi1, . . . , ~εiT )′ = εi −Xi (X ′iMιTXi)
−1X ′iMιT εi, ğ∆,it = g∆,it −

X ′itβ̄∆i, and ğ∆,i = (ğ∆,i1, . . . , ğ∆,iT )′ .
Now we give the sketch of the proof of Theorem 4.1.
The Sketch of proof for Theorem 4.1. We only give the sketch proof for (ii) because

(i) can be seen as a special case of (ii) with γNT = 0. Using (A.2), we can decompose ΓNT as
follows

ΓNT =
1

NT 2

N∑
i=1

(~εi + γNT ğ∆,i − γNTXiν∆i,T )′Ki (~εi + γNT ğ∆,i − γNTXiν∆i,T ) ≡
6∑
s=1

Γ(s)
NT , say

where

Γ(1)
NT = 1

NT 2

∑N
i=1 ~ε

′
iKi~εi, Γ(2)

NT = γ2
NT
NT 2

∑N
i=1 ğ

′
∆,iKiğ∆,i, Γ(3)

NT = γ2
NT
NT 2

∑N
i=1 ν

′
∆i,TX

′
iKiXiν∆i,T ,

Γ(4)
NT = 2γNT

NT 2

∑N
i=1 ~ε

′
iKiğ∆,i, Γ(5)

NT = −2γNT
NT 2

∑N
i=1 ~ε

′
iKiXiν∆i,T , Γ(6)

NT = −2γ2
NT

NT 2

∑N
i=1 ğ

′
∆,iKiXiν∆i,T .

With the decomposition, we have

Ĵ†NT =
N1/2TΓNT − B̂†NT

V̂†1/2NT

=

(
J†NT +

6∑
s=2

N1/2TΓ(s)
NT

V†1/2NT

+
B†NT − B̂†NT

V†1/2NT

)
V†1/2NT

V̂†1/2NT

where J†NT = (N1/2TΓ(1)
NT − B†NT )/V†1/2NT . We can complete the proof by showing that (i)

J†NT
d→ N (0, 1) ; (ii) N1/2TΓ(2)

NT /V
†1/2
NT = Φ∆ + op (1), where Φ∆ = plim(N,T )→∞Φ∆,NT with

Φ∆,NT = 1
NT 2

∑N
i=1 ğ

2
∆,itwit; (iii) N1/2TΓ(s)

NT /V
†1/2
NT = op (1) for s = 3, . . . , 6; (iv) B̂†NT −B†NT =

op(K1/2); (v) V̂†NT /V
†
NT = 1 + op (1).

First, it is straightforward to show (i), (ii), (iv) and (v) by modifying the corresponding
proofs for Theorem 3.1. For (iii), following the proof of (iii) in Theorem 3.1, we can show
that Γ(3)

NT = op
(
γ2
NT

)
= op(K1/2/(N1/2T )), Γ(4)

NT = γNTOp(
√
K/(NT )) = op(K1/2/(N1/2T )),

Γ(5)
NT = γNTOp(

√
K/(NT ))op (1) = op(K1/2/(N1/2T )), and Γ(6)

NT = op
(
γ2
NT

)
= op(K1/2/(N1/2T )).

Proof of Corollary 4.2. We can follow the proof of Theorem 3.2 to show the corollary.
The details are omitted here.

D.2 Test the homogeneity of time-varying coefficients

We first study the behavior of ûit and ĝit under the local alternative. There exist Π0
β ∈ Rd×L

and Π0
f ∈ RL−1 such that β0 (·) ≈ Π0

βB
L (·) and f0 (·) ≈ Π0′

f B
L
−1 (·). Let git = g0,it + γNT g∆,it,
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where g0,it = X ′itβ0 (τt)+f0 (τt). Given ZLit = (BL′
−1t,

(
Xit ⊗BL

t

)′)′, denote rg0,it = g0,it−ZL′it Π0,

where Π0 =
(

Π0′
f , vec(Π0′

β )
)′

. Let SŻŻ =
∑N

i=1 Ż
L′
i Ż

L
i , Π̂∆,NT = S−1

ŻŻ

∑N
i=1 Ż

L′
i g∆,i, Π̄∆ =[

E
(
SŻŻ

)]−1∑N
i=1E

(
ŻL′i g∆,i

)
, Rg0,i ≡ (rg0,i1, . . . , rg0,iT )′ and g∆,i ≡ (g∆,i1, . . . , g∆,iT )′. Then

we have

Π̂FE −Π0 = S−1
ŻŻ

N∑
i=1

ŻL′i Rg0,i + γNT Π̄∆ + γNT

[
Π̂∆,NT − Π̄∆

]
+ S−1

ŻŻ

N∑
i=1

ŻL′i εi

≡ Rg0,NT + γNT Π̄∆ + γNT νΠ∆,NT + νL,NT ,

where Rg0,NT = S−1
ŻŻ

∑N
i=1 Ż

L′
i Rg0,i, νΠ∆,NT = Π̂∆,NT − Π̄∆ and νL,NT = S−1

ŻŻ

∑N
i=1 Ż

L′
i εi. Let

ğ∆,it = g∆,it − ZL′it Π̄∆ and ν̆L,NT = γNT νΠ∆,NT + νL,NT . We can write

git − ĝit = (g0,it + γNT g∆,it)− ZL′it
(
Π0 +Rg0,NT + γNT Π̄∆ + ν̆L,NT

)
=
(
g0,it − ZL′it Π0

)
+ γNT

(
g∆,it − ZL′it Π̄∆

)
− ZL′it Rg0,NT − ZL′it ν̆L,NT

=
(
rg0,it − ZL′it Rg0,NT

)
+ γNT ğ∆,it − ZL′it ν̆L,NT

= r̆g0,it + γNT ğ∆,it − ZL′it ν̆L,NT

where r̆g0,it = rg0,it − ZL′it Rg0,NT . Let R̆g0,i = (r̆g0,i1, . . . , r̆g0,iT )′ and ğ∆,i = (ğ∆,i1, . . . , ğ∆,iT )′.
Then we have

ûit = εit + αi + r̆g0,it + γNT ğ∆,it − ZL′it ν̆L,NT and (A.3)

ûi = εi + αiιT + γNT ğ∆,i + R̆g0,i − ZLi ν̆L,NT . (A.4)

To establish the asymptotic distribution of Ĵ‡NT , we need the following assumptions.
Assumption 3∗. (i) f (·) and β0,l (·) for l = 1, . . . , d are all continuously differentiable up
to κ-th order for some κ > 0; (ii) For each i, ∆β,il (·) for l = 1, . . . , d, and ∆f,i (·) are all
continuously differentiable up to κ-th order for some κ > 0.
Assumption 4∗∗. As (N,T )→∞, Φ∆ = plim(N,T )→∞Φ∆,NT > 0 under H1h,γNT .
Assumption 5. As (N,T )→∞, L→∞, L2/T → 0, and K/L→ 0.

Now we give the sketch for the proof of Theorem 4.3.
Sketch of Proof for Theorem 4.3. We only give the sketch proof for (ii) since (i) can

be seen as special case of (ii) with γNT = 0. Using (A.4) and ΓNT = 1
NT 2

∑N
i=1 û

′
iKiûi, we

have ΓNT ≡
∑10

s=1 Γ(s)
NT , where Γ(1)

NT ≡
1

NT 2

∑N
i=1 ε

′
iKiεi, Γ(2)

NT ≡
γ2
NT
NT 2

∑N
i=1 ğ

′
∆,iKiğ∆,i, Γ(3)

NT ≡
1

NT 2

∑N
i=1 R̆

′
g0,i
KiR̆g0,i, Γ(4)

NT ≡
1

NT 2

∑N
i=1 ν̆

′
L,NTZ

L′
i KiZLi ν̆L,NT , Γ(5)

NT ≡
2γNT
NT 2

∑N
i=1 ε

′
iKiğ∆,i,

Γ(6)
NT ≡

2
NT 2

∑N
i=1 ε

′
iKiR̆g0,i, Γ(7)

NT ≡
−2
NT 2

∑N
i=1 εiKiZLi ν̆L,NT , Γ(8)

NT ≡
2γNT
NT 2

∑N
i=1 ğ∆,iKiR̆g0,i,

Γ(9)
NT ≡

−2γNT
NT 2

∑N
i=1 ğ∆,iKiZLi ν̆L,NT , and Γ(10)

NT ≡
−2
NT 2

∑N
i=1 R̆g0,iKiZLi ν̆L,NT . Then Ĵ‡NT can be

decomposed as follows

Ĵ‡NT =
N1/2TΓNT − B̂‡NT

V̂‡1/2NT

=

(
J‡NT +

10∑
s=2

N1/2TΓ(s)
NT

V‡1/2NT

+
B‡NT − B̂‡NT

V‡1/2NT

)
V‡1/2NT

V̂‡1/2NT

.
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We complete the proof by showing that: (i) J‡NT = (N1/2TΓ(1)
NT − B‡NT )/V‡1/2NT

d→ N (0, 1) ;
(ii) J (2)

NT ≡ N1/2TΓ(2)
NT /V

‡1/2
NT = Φ∆ + op (1), where Φ∆ = plim(N,T )→∞Φ∆,NT with Φ∆,NT =

1
NT 2

∑N
i=1 ğ

2
∆,itwit; (iii) J (s)

NT ≡ N1/2TΓ(s)
NT /V

‡1/2
NT = op (1) for s = 3, . . . , 10; (iv) B̂‡NT − B‡NT =

op(K1/2); (v) V̂‡NT /V
‡
NT = 1 + op (1).

First, we can show that (i), (ii), (iv) and (v) in the proof of Theorem 3.1. Second, we can
follow the proofs of (iii) for Theorem 3.1 to show that Γ(3)

NT = Op
(
L−2γ

)
= op(V

‡1/2
NT /(N

1/2T )),
Γ(4)
NT = op

(
γ2
NT

)
+Op (L/ (NT )) = op(V

‡1/2
NT /(N

1/2T )), Γ(5)
NT = Op(γNT

√
K/(NT )) = op(V

‡1/2
NT /(N

1/2T )),
Γ(6)
NT = Op(L−γ

√
K/(NT )) = op(V

‡1/2
NT /(N

1/2T )), Γ(7)
NT = Op(

√
K/(NT )) [op (γNT )+Op(

√
L/(NT ))] =

op(V
‡1/2
NT /(N

1/2T )), Γ(8)
NT = op (γNTL−γ) = op(V

‡1/2
NT /(N

1/2T )), Γ(9)
NT = op

(
γ2
NT

)
+Op(γNT

√
L/(NT )) =

op(V
‡1/2
NT /(N

1/2T )), Γ(10)
NT = Op (L−γ) [op (γNT ) +Op(

√
L/(NT )) = op(V

‡1/2
NT /(N

1/2T )).
Proof for Corollary 4.4. We can follow the proof of Theorem 3.2 to show the corollary.

The details are omitted here.

E Additional simulation results

In this section, we present the testing results for the two tests discussed in Section 4.
First, we test the stability of heterogeneous coefficients and intercepts for DGPs 1-7. DGPs

1 and 3 are for size study, and other 5 DGPs are for power comparison. Under the null
hypothesis Hs,0, we use the simple OLS to estimate the heterogenous slopes and intercepts.
In the construction of testing statistic, we consider the cosine functions as basis and the same
numbers of sieve terms K1, K2, K3 and Kcv as in Section 5. We also report the bootstrap p-
value, where the null hypothesis of constant slopes and intercepts are imposed in the bootstrap
world. Different combinations of sample sizes are used: T = 25, 50, 100 and N = 25, 50. For
each combination of sample sizes, the number of replications is 500 times. In bootstrap, we
consider 400 resamples for size studies and 300 resamples for power comparisons. Table 3
reports the testing results for the stability test.

Second, we test the homogeneity of TVCs in DGPs 1-5. DGPs 1-2 are for size study and
DGPs 3-5 are for power comparison. Although DGPs 6-7 have homogeneous coefficients, we do
not report the testing results because their coefficient functions are not continuous. Under the
null Hh,0, we also adopt the cosine functions as basis functions in the estimation of homogeneous
time-varying coefficients. The numbers of basis functions in the sieve approximation of β (·)
and f (·) are both L =

⌊
2(NT )1/5

⌋
. In the construction of testing statistic, we consider

the same numbers of sieve terms K1, K2, K3 and Kcv as in Section 5. We also report the
bootstrap p-value, where the null hypothesis of common TVCs are imposed in the bootstrap
world. Different combinations of sample sizes are used: T = 25, 50, 100 and N = 25, 50. For
each combination of sample sizes, the number of replications is 500 times. In bootstrap, we
consider 400 resamples for size studies and 300 resamples for power comparisons. The testing
results are reported in Table 4.
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Table 3: Simulation results for stability test
K1 K2 K3 Kcv

DGP T N 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 25 25 0.014 0.080 0.150 0.140 0.056 0.098 0.020 0.090 0.154 0.014 0.084 0.154

50 0.008 0.0602 0.146 0.004 0.064 0.132 0.018 0.072 0.138 0.008 0.062 0.146
50 25 0.018 0.050 0.108 0.012 0.062 0.122 0.010 0.060 0.122 0.020 0.056 0.114

50 0.006 0.052 0.118 0.010 0.074 0.154 0.016 0.084 0.140 0.006 0.052 0.118
100 25 0.006 0.056 0.134 0.010 0.060 0.150 0.016 0.080 0.128 0.020 0.066 0.108

50 0.022 0.076 0.134 0.014 0.068 0.130 0.016 0.058 0.126 0.014 0.060 0.114

2 25 25 0.884 0.972 0.988 0.308 0.588 0.748 0.064 0.196 0.348 0.884 0.972 0.988
50 0.968 0.996 1.000 0.532 0.776 0.880 0.096 0.296 0.456 0.968 0.996 1.000

50 25 1.000 1.000 1.000 0.992 1.000 1.000 0.932 0.984 0.996 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.996 0.996 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 25 25 0.020 0.068 0.120 0.016 0.960 0.172 0.012 0.088 0.136 0.020 0.072 0.124
50 0.012 0.068 0.0128 0.012 0.072 0.152 0.012 0.048 0.108 0.012 0.068 0.128

50 25 0.008 0.060 0.140 0.028 0.080 0.120 0.020 0.092 0.148 0.012 0.068 0.152
50 0.004 0.048 0.112 0.012 0.052 0.148 0.008 0.064 0.116 0.004 0.048 0.112

100 25 0.004 0.064 0.136 0.000 0.032 0.080 0.000 0.020 0.104 0.012 0.048 0.108
50 0.008 0.052 0.092 0.020 0.056 0.120 0.020 0.092 0.120 0.012 0.056 0.108

4 25 25 0.876 0.956 0.988 0.496 0.716 0.840 0.104 0.252 0.404 0.884 0.964 0.992
50 0.996 1.000 1.000 0.780 0.948 0.972 0.232 0.464 0.652 0.996 1.000 1.000

50 25 1.000 1.000 1.000 0.992 1.000 1.000 0.984 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 25 25 1.000 1.000 1.000 0.860 0.944 0.968 0.232 0.488 0.632 1.000 1.000 1.000
50 1.000 1.000 1.000 0.964 0.996 0.996 0.364 0.664 0.788 1.000 1.000 1.000

50 25 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.996 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 25 25 1.000 1.000 1.000 1.000 1.000 1.000 0.804 0.932 0.960 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 0.928 0.988 0.996 1.000 1.000 1.000

50 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 25 25 1.000 1.000 1.000 1.000 1.000 1.000 0.768 0.892 0.960 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 0.912 0.964 0.988 1.000 1.000 1.000

50 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: 1. 1. KC =
⌊
CT 1/6

⌋
, C = 1, 2, 3, Kcv refers to the number by LOOCV;

2. DGPs 1 and 3 are for size study and all the other DGPs are for power comparison.
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Table 4: Simulation results for homogeneity test
K1 K2 K3 Kcv

DGP T N 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 25 25 0.000 0.026 0.840 0.002 0.034 0.072 0.008 0.040 0.092 0.000 0.260 0.840

50 0.008 0.062 0.114 0.010 0.056 0.102 0.006 0.0520 0.122 0.008 0.062 0.114
50 25 0.006 0.042 0.112 0.008 0.060 0.132 0.012 0.042 0.102 0.008 0.042 0.112

50 0.009 0.052 0.110 0.012 0.050 0.110 0.010 0.048 0.100 0.008 0.052 0.110
100 25 0.012 0.048 0.118 0.010 0.048 0.136 0.012 0.058 0.116 0.010 0.058 0.124

50 0.008 0.034 0.090 0.002 0.040 0.082 0.008 0.042 0.078 0.006 0.040 0.092

2 25 25 0.000 0.030 0.082 0.002 0.036 0.072 0.008 0.038 0.094 0.000 0.030 0.082
50 0.010 0.062 0.106 0.010 0.054 0.098 0.006 0.050 0.126 0.010 0.062 0.106

50 25 0.006 0.048 0.116 0.010 0.052 0.128 0.012 0.044 0.102 0.008 0.048 0.116
50 0.008 0.052 0.112 0.010 0.048 0.110 0.010 0.054 0.096 0.008 0.052 0.112

100 25 0.010 0.048 0.118 0.010 0.048 0.132 0.012 0.050 0.112 0.010 0.056 0.124
50 0.060 0.036 0.092 0.004 0.042 0.084 0.006 0.040 0.078 0.006 0.038 0.090

3 25 25 0.108 0.316 0.444 0.076 0.216 0.324 0.028 0.116 0.240 0.108 0.316 0.444
50 0.172 0.430 0.620 0.088 0.256 0.424 0.048 0.168 0.276 0.172 0.432 0.620

50 25 0.492 0.728 0.856 0.320 0.576 0.732 0.236 0.484 0.636 0.492 0.728 0.856
50 0.764 0.932 0.964 0.604 0.848 0.932 0.456 0.720 0.868 0.764 0.932 0.964

100 25 0.872 0.960 0.988 0.824 0.940 0.976 0.752 0.912 0.960 0.892 0.980 0.988
50 1.000 1.000 1.000 0.984 1.000 1.000 0.964 1.000 1.000 1.000 1.000 1.000

4 25 25 0.272 0.556 0.692 0.132 0.300 0.444 0.048 0.176 0.268 0.272 0.556 0.692
50 0.584 0.836 0.932 0.336 0.568 0.752 0.104 0.316 0.472 0.584 0.836 0.932

50 25 0.900 0.976 0.992 0.808 0.952 0.984 0.664 0.884 0.940 0.900 0.976 0.992
50 0.998 1.000 1.000 0.980 1.000 1.000 0.940 0.988 1.000 0.996 1.000 1.000

100 25 0.992 0.996 1.000 0.988 0.996 1.000 0.984 0.996 1.000 0.996 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 25 25 1.000 1.000 1.000 0.996 1.000 1.000 0.912 0.972 0.984 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 0.988 0.996 1.000 1.000 1.000 1.000

50 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

100 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: 1. KC =
⌊
CT 1/6

⌋
, C = 1, 2, 3, Kcvrefers to the number chose by LOOCV;

2. DGP 1-2 are for size study and DGPs 3-5 are for power comparison.
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