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Abstract

This paper provides a nonparametric test for the commonly-used structure, the homo-
geneity and stability, on the parameters in panels. We first get the augmented residuals
by estimating the model under the null hypothesis of homogeneity and stability, then run
auxiliary time series regressions of residuals on the regressors with time-varying coefficients
via sieve methods. The test statistic is constructed by averaging the squared fitted val-
ues, which is close to zero under the null and deviates from zero under the alternative.
We show that the test statistic, after being appropriately standardized, is asymptotically
normally distributed under the null and a sequence of Pitman local alternatives as both
cross-sectional and time dimensions tend to infinity. A bootstrap procedure is proposed to
improve the finite sample performance of our test. Monte Carlo simulations indicate that
our test performs reasonably well in finite samples. We apply the test to study the Environ-
mental Kuznets Curve in U.S. and reject the homogeneity and stablility of the coefficients
for all states. In addition, we extend the procedure to test other structures such as the

homogeneity of time-varying coeflicients or the stability of heterogeneous coefficients.
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1 Introduction

The relationship between economic variables usually changes slowly over a long time span,
which is possibly influenced by preference change, technological progress, or some other driving
forces such as institutional transformation, economic transition, policy switch, etc., see Chen
and Hong (2012). For this reason, mainly motivated by time-varying or functional coefficient
models in the literature of semiparametric regression, numerous studies have been devoted to
capture the important feature of time-varying coefficients (TVC) or smoothing time trends in
the panel data framework. For example, Li et al. (2011) propose a local linear dummy variable
approach for estimating panel models with TVC, which is an extension of Cai et al.’s (2000)
and Cai’s (2007) TVC time series models; Robinson (2012) studies the kernel estimation of
nonparametric trending panel data models with cross-sectional dependence; Chen et al. (2012)
include exogenous regressors in Robinson’s (2012) nonparametric panel trending model with a
partially linear structure; Atak et al. (2011) adopt a semiparametric unbalanced panel data
model with smoothing time trends to study the climate change in the United Kingdom. For
other related works on time-varying or functional coefficients panel data models, see Zhao et
al. (2016), Gao et al. (2018), among many others.

Almost all the aforementioned papers assume that all cross-sectional units in panels share
the same vector of constant coefficients, and that the heterogeneity among individual units is
fully captured by the additive unobservable individuals fixed effects. Even if the homogene-
ity assumption greatly reduces the dimension of parameter space, and significantly simplifies
the processes of estimation and inference, however, this assumption may be inappropriate in
practice and the restricted estimator with homogeneity may cause a biased estimator for the
cross-sectional simple “average” or “mean” of slopes, and further lead to misleading conclusions
(e.g., Hsiao and Tahmiscioglu (1997) and Lee et al. (1997)). A conservative way is to allow
individual-specific or group-specific slope coefficients. For example, Ma et al. (2018) consider
testing empirical asset pricing models with individual-specific time-varying factor loadings and
intercepts; Su et al. (2018) propose a heterogeneous time-varying panel data model with a
latent group structure and apply the classified-Lasso of Su et al. (2016) to estimate the TVCs
and group memberships jointly; Liu et al. (2018) study a class of time-varying panel data
models with individual-specific regression coefficients in the presence of common factors, and
propose a unified semiparametric profile method to estimate the TVCs and the factor loadings

simultaneously.



Since the specification of stability and/or homogeneity of coefficients plays a critical role
in obtaining consistent estimation and valid statistical inference for panel data models, it is
necessary and prudent for researchers to carry out certain specification or diagnostic tests
before embarking on the estimation with such restrictions. However, there are only several
specification tests for the heterogenous time-varying panel data models. For example, Zhang
et al. (2012) and Hidalgo and Lee (2014) propose nonparametric tests for the common time
trends in a semiparametric panel data model with homogeneous linear slopes; Chen and Huang
(2018) suggest a nonparametric Wald-type test for the stability of coefficients while assuming
that all the coefficients are homogenous among individuals; Gao et al. (2018) provide a test
for homogeneity of constant slopes while allowing individual-specific and nonparametric time
trends; Ma et al. (2018) test whether all the individual-specific time trends are equal to zero
jointly for the asset pricing model with heterogenous time-varying factor loadings.

Yet there is no available test for the joint structure of homogeneity and stability on the
coefficients for panel data models. The joint structure implies that all the coefficients in panels
are fixed constant along both the time series and cross-sectional dimensions, i.e., the usual
homogeneous linear panel data model, which is the simplest and most widely-used specification
in empirical studies. To fill the gap, in this paper, we provide a nonparametric test for the
joint structure on the heterogeneous TVC panel data model. We first estimate the model
under the null hypothesis and obtain the augmented residuals, which consistently estimate the
sums of fixed effect and the disturbance errors if the null is true. Then we run auxiliary time
series regressions of the augmented residuals on regressors and constant with TVCs via the
sieve method and propose a testing statistic by averaging all the squared fitted values across
individuals and time periods. By construction, the testing statistic is close to 0 under the
null and deviates from 0 under the alternative. We show that the test statistic, after being
appropriately standardized, is asymptotically normally distributed under both the null and
a sequence of Pitman local alternatives when both cross-sectional and time dimensions tend
to infinity. A bootstrap procedure is proposed to improve the finite sample performance of
the test. Extensions of the proposed testing to other commonly-used specifications such as the
homogeneity of TVCs and the stability of heterogenous coefficients in panels are also discussed.
Monte Carlo simulations indicate that the proposed test performs reasonably well in finite
samples in a variety setup of data generating processes. We apply our test to Environmental

Kuznets Curve estimation and reject the assumption of homogeneous and stable coefficients in



the model.

The rest of the paper is organized as follows. In Section 2, we introduce the basic framework
including the model, the hypothesis of interest, and the proposed test based on the estimation
under the null hypothesis. The large sample theory for the proposed test and extension of the
test for models with homogeneous TVC or stable heterogeneous coefficients are provided in
Section 3 and Section 4, respectively. Section 5 conducts a set of Monte Carlo simulations to
investigate the finite sample performance of our test. We apply our proposed test to study the
Environmental Kuznets Curve (EKC) in US in Section 6. Section 7 concludes. The proofs for
main theorems and the lemmas, additional simulation results are contained in appendix.

Notation. We use Apin (A4), Amax (4) and tr(A) to denote the smallest eigenvalue, largest
eigenvalue and the trace of a matrix A, respectively. For any n x m matrix A, let A’ be its
transpose, ||A| = /tr(A’4) its Frobenius norm, P4 = A(A’A) ' A" and My = I, — Pa,
where I, is an m x m identity matrix. We use p.s.d. (p.d.) for the abbreviation for “positive
semi-definite (positive definite)”. The symbols —, and —4 denote convergence in probability

and in distribution, respectively. (N,T) — oo signifies that N and T tend to infinity jointly.

2 Basic Framework

In this section, we first introduce the heterogeneous TVC panel data model and the main
hypothesis of interest, then discuss the motivation of our testing approach with the restricted
estimation under the null hypothesis, and finally propose a testing statistic based on auxiliary

time series regressions with a TVC structure.

2.1 The Model and Hypothesis

We consider the following heterogeneous TVC panel data models with fixed effects and time
trend
Yie = X8 + fir + i +e, i=1,... Nt =1,...,T, (2.1)

where Yj; is a scalar, X;; is a d-vector of time-varying exogenous explanatory variables which
may include some common regressors such as macroeconomic variables or financial factors,
«; represents the individual-specific unobservable effect which may be correlated with the

regressors X;;. (¢ is a vector of deterministic time-varying coefficients and f;; is the time trend



for the ith individual. For the idiosyncratic error e;;, we follow Su et al. (2018) and assume
€it = O€ir With J?t = U? (X, t/T), (2.2)

where €;; has zero mean and variance one conditional on Xj;.

Following the literature of nonparametric time-varying regressions (e.g. Cai (2007), Robin-
son (1989, 1991, 2012), Li et al. (2011), Zhang et al. (2012), Chen et al. (2012), Chen and
Huang (2018)), we assume that for each i both slope (3 and trend f;; change slowly over a

long time span as follows

ﬂitzﬂi (Tt) and fzt:fz (Tt) for t = 17"‘7T7 (23)

where 7, = t/T is the time regressor, and 3; (-) : [0,1] — R? and f; (-) : [0,1] — R are all

unknown smooth functions. To identify f; (-) and a; in (2.1), we impose that!
/Olfi(T)dT:OfOri:1,...,N. (2.4)
Denote the component in Yj; explained by regressors (X;;) and 1 with TVCs as?
git = 9i (Xit, 7¢) = X[y Bit + fur- (2.5)

The models specified in (2.1) and (2.3) are quite general and include various panel data
models in the literature as special cases when different structures are imposed on the unknown

functions f; (+)’s and f; (+)’s:

1. If ; () = B and f; () = 0 for all i’s, then model (2.1) reduces to the usual homogeneous
linear panel data model with fixed effects in standard textbooks (see Baltagi (2012), Hsiao
(2014) and Pesaran (2015)):

Yie = Xy + i + e (2.6)

2. when f; () = B; and f; (-) = 0 for each 4, then model (2.1) becomes the heterogeneous
linear panel data model with fixed effects (see Hsiao (2014), Pesaran (2015) and Hsiao
and Pesaran (2008)):

Yie = XiyBi + i + € (2.7)

! Alternatively, we can impose that f; (¢*) =0 for i = 1,..., N and ¢* € [0, 1].
2Clearly, the setup in (2.1) and (2.3) can be easily generalized to allow for a mixture structure such as

Yie = X1.001,it + Xo.i82, + X3.0683,0 + X404 + s + €t

where the time trends (f;: or f:) can be aborbed in the first or third components. To simply the illustruation,

we focus on the model with a fully heterogneous TVCs.



3. when 3; () = B (-) and f; (-) = f(-) for i = 1,..., N, then model (2.1) is the panel data
model with homogeneous TVCs studied by Chen and Huang (2018), Chen et al. (2012),
Silvapulle et al. (2016), and Li et al. (2011):

Yie = f (1) + X[, B (1) + a; + €it; (2.8)

4. when §;(-) = fB; or f and f;(-) # 0 or fi(-) = f(-) # 0, then model (2.1) becomes the
following homogeneous or heterogeneous linear panel data models with homogeneous or

heterogeneous nonparametric time trends:

Yie = f (1) + X[,B + a; + i, (2.9
Yie = fi (1) + X[,8 + o + i, (2.10
Yie = f (1) + X8 + i + e, (2.11
Yie = fi (1) + X[, B + i + et (2.12

where models (2.9)-(2.12) have been studied by Chen et al. (2012), Zhang et al. (2012),
and Atak et al. (2012), Gao et al. (2018), respectively.

5. when there is no regressors (5; (1) =0 for alli = 1,..., N), then model (2.1) becomes the

nonparametric trending panel data models:

Yie = f (1) + i + €ty (2.13)
Yie = fi (1) + o + €, (2.14)

where the homogeneous trending model (2.13) has been studied by Robinson (2012) and

model (2.14) allows for heterogeneous trending behavior.

6. when there exists an unknown group structure for coefficients 3;’s (i.e., Bix = B when
i and 7 lie in the same group), model (2.1) becomes the heterogeneous linear panel data
model with time-invariant coefficients in Su et al. (2016) or the heterogeneous panel data

model with slowly varying coefficients in Su et al. (2018).

In this paper, we are interested in the joint test of homogeneity and stability of parameters

in model (2.1). The null hypothesis is

Ho : (Bit, fit) = (Bo,0) for some [y € R? and all i’s and s, (2.15)



against the alternative hypothesis

Hi : (Bit, fit) # (Bjs, fjs) for some (i,t) # (4,s). (2.16)

When the null hypothesis holds, all the individuals share the same time-invariant slopes for
regressors X;; and do not have time trends. Then model (2.1) under Hy becomes the usual
homogeneous linear panel data model with fixed effects. We can estimate the model either by
the usual fixed-effect (FE) estimator or first-difference (FD) estimator.?

For the above hypothesis testing problem, one can construct testing statistics in the spirit
of LR, Wald or LM tests. In this paper, we propose a nonparametric test for the structure in
(2.15) based on the estimation under the null hypothesis for several reasons: first, the restricted
estimation under Hy is much simpler than the estimation of the model without restriction;
second, models with restrictions on parameters (homogeneity across individuals and stability
along time) are preferred in empirical studies and our proposed test can be seen as a diagnostic
test after the simple and popular model is fitted; lastly, the testing strategy provides a unified
approach to testing other structures on parameters in panel data models such as homogeneity,

stability or group pattern, and so on.

2.2 Estimation under the nulls and the test statistic

Since our test is based on the estimation under the null hypothesis, we introduce the estimators

first. Under Hy, the model (2.1) reduces to
Yir = Xiy00 + ai + €ir. (2.17)

We can estimate (y either by FE or FD estimator when X;; are strictly exogenous. For
illustration purposes, we adopt the following FE estimator

N
Bre = (ZX;MLTXi> PP arma (2.18)
i=1 =1

where M,, = It — LTL’T/T, vp is a T x 1 vector of ones, X; = (Xil,...,XiT), and Y; =
(Yi1,...,Yir). Then gy in (2.5) is estimated by g;; = X{tﬁFE. Denote

N 1N
Y E (X{MLTXi)] > E(X[M,,Y;),
i=1 =1

3When X, include the lags of dependent variable or endogeneous variable, we can estimate the model by

Bp =

GMM or IV approach, the proposed test statistics to be discussed will still be valid with extra assumptions and

more labrous derivation.



as the nonrandom version of BF g and gpi; = XLp p.4
Let 4 = Yj; — git be the augmented residual and 7;; = it — gps+ the “estimation error”

when one use g;; to estimate gp;;. Then we can decompose 1;; as follows
it = Yir — it = (it — gpin) + (9Pt — Git) + (i + i) = gl — mie + wae, say, (2.19)

where u;; = «; + €;; is the generalized error.
For (2.19), we note that, first, the second component 7;; (= git — gpit) is asymptotically
negligible either under the null or alternative hypotheses. Second, the first component g;ft

(= git — gp,it) can be rewritten as
gl = fi () + X[y 1Bi (70) — Bp) = f] (m) + X480 (m0) -

Clearly, 3; (-) = (o = [Bp and f;r (-) = 0 for all i’s under Hp, and then we have g;, = 0 for all
(i,t)’s. However, (3;; and f;; have variation either across i or over ¢t under Hy, and then we in
general have ﬁg (1¢) # 0 and fiT (1¢) # 0. It follows that g},’s are generally away from 0 when
H; holds.

The opposite behavior of gjt under Hy and H; motivates us to consider the following test

statistic based on the weighted sum of squared ggt:

0 1 o )2
Thr =57 0D (gh) wie, (2:20)

i=1 t=1
where w;; = w; (1¢) and w; (+)’s are some user-specified non-negative weighting functions. By
construction, F?VT > 0. Clearly, F?VT equals 0 under H, but is greater than 0 under Hj.
However, in practice, '} is infeasible because {g;-ft,i =1,...,7,1=1...,N} are unknown to

the researchers. In the following section, we propose the sieve estimation of gjt.

2.3 Auxiliary time series regressions with TVCs

As mentioned above, to obtain a feasible testing statistic, we need to estimate ggt. Noting that

U is a consistent estimator for the composite error u;; under H, and for g;rt + w;; under H;,

R —1
“When the FD estimator is used, we have Brp = (Zf\il ZtT:Z AXitAXft) Zf;l 23:2 AX;+AY;:, and

-1
Bp = (Zi’i Ty E(AXitAX{t)) SN ST E(AXuAYy), where AX; = Xy — Xiy 1 and AY; = Yy —
Yii—1.



T
. ~ T .1 . . . N
we can estimate { ggt} based on {u},_, by the auxiliary time series regression of @;; on X
t=1

and 1 with TVCs. For each i, we run an auxiliary time series regression with TVCs:®
Uit = fl-T (1¢) + X{tﬁg (1¢) + oy + 5L, t=1,...,T, (2.21)

where E;ft = ¢t — nit. Noting that fj (+) : [0,1] — R and ﬂ;r (:) : [0,1] — R? are all unknown
functions, which can be estimated either by the kernel method (e.g., Li et al. (2011), Chen and
Huang (2018)) or the sieve method (e.g., Dong and Linton (2018), Su and Zhang (2016), Zhang
and Zhou (2018)). In this paper, we focus on the sieve estimation of the unknown functions in
(2.21).

Let L2 [0, 1] { fo T)dr < oo} in which (uq, uz) fo uy ( (7) d7 is the inner
product and the induced norm is Hu|| = (u, u>1/2. Following Dong and Linton (2018), we choose
cosine functions as basis functions.® Let By (1) = 1, and B (1) = v/2 cos(jm7) for j > 1. Then
{B; (T)};)il forms an orthonormal basis in the Hilbert space L? [0, 1] such that (B;, B;) = 6;;,
where §;; is the Kronecker delta. For any unknown continuous function u (7) € L?[0,1], we

obtain

Zﬂu] ), where m, ; = (u, Bj) .

Suppose that for each i, 8} (-) € L2[0,1] for I = 1,...,d and f) (-) € L*[0,1]. Let BX (-) =
(Bo(-),B1(-),...,Bx_1()) and B (-) = (B1("),...,Bg_1(-))" be the sequences of basis
functions to approximate unknown functions ﬁjl () 1 =1,...,d) and fl-T (-), respectively.”

Then for each i, we obtain®

Zﬁﬂ 03B () = UpaBY () +r5) () 1=1....d (2:22)
K

= Zﬁf,z',ij (-) = 9%,BE () + T;T '), (2.23)
j=1 i

°In testing the stability of homogeneous time-varying coefficients, the pooled estimation is more efficient since
fI=f] and g} = B! for all i # j.

6As mentioned in Dong and Linton (2018), the cosine basis functions can be replaced by any other orthonormal
basis in Hilbert space. However, the use of specific basis other than some general ones simplifies the assumptions

on basis functions and leads to simpler calculation.
7No'cing that the constant term is left out in the approximation of f (-) to impose the identification restriction

[y f (r) dr = 0 automatically.
8VVe can let the number of basis functions vary across different functions f; () and 3}, (-), ¢ = 1,..., N and

Il =1,...,d. For simplicity, we adopt the same number of basis functions K in the sieve approximation of different

unknown functions.



where g ; = <ﬁ;rl,Bj> for any integer j > 0, and ¥y, ; = <fZT,Bj> for any integer j > 1,

s = Dgi.0--Vgax—1) and Vp; = (Igi1s---»9pik-1) 7“;() () = 2k Vpu5B; ()
il

and riff) () = X2k VriB; (). By Assumption 3 in Newey (1997), sup,¢jo 1]

O (K™") and sup,¢ 1

K
"

r%{) ()’ = O (K™") as K — oo when ﬁjl () and f;r (-) have xth con-
tinuous derivatives. Then we approximate ﬁjl (-) by 19’WZBK (+), and f;r (+) by ¢, ﬂ-Bfl (). Let
B, = BE (1¢) and B_1¢ = Bf(l (7¢), where the dependence on K is suppressed to simplify the

notation. Using the approximations in (2.22)-(2.23) yields

d
it = thﬁ;rt + fitt ~ ZXit,lBéﬂﬁ,il + B/—l,tﬁf,i = Zjy0i,
=1

where 9; = (19}71-,V6C(29/3,Z')/),, "9,@,1' = (19571'1,. . -aﬂﬁ,id) and Z; = (B,Lt, (th ®Bt)/)/ with ®
being the Kronecker product. As a result, the linearized time series regression model with

sieve approximation is given by
Uiy = Z{t’ﬁz +aoa;+vy, t=1,...,T, (224)
(K)

Bl
approximation error of gjt. Rewrite the model (2.24) in vector form

where vy = g5 — N + TL, and r; = g;rt — ZL; = Zle roe) (1) Xy + r%() (7¢) is the sieve

Uy = Z;9; + vpa; + v;, (2.25)

where @; = (;1,...,0%7), Zi = (Z{l,...,Z{T)/, and v; = (vi1,...,v). The usual OLS

estimator for 19; and the corresponding estimator for ggt are respectively given by

O; = (ZiM, Z;) ™" ZIM, i and g, = Z3,0;. (2.26)

Based on the sieve estimators gjt, we can construct a feasible version of F?VT as follows

1 N T .t 9
nr =5 9. (git> wir. (2.27)

i=1 t=1
Under certain regular conditions, we show later that after being appropriately centered and
scaled, 'y follows a standard normal distribution asymptotically under the null hypothesis.
3 Asymptotic theory

In this section, we study the large sample properties for the above test statistics.

10



3.1 Assumptions

In order to study the asymptotic properties for Iy under the null hypothesis, we make the
following assumptions.
Assumption 1. (i) € in (2.2) is independent of X, for any (7,t) and (j,s), F (i) = 0 and
Var(e;) = 1;

(ii) { (X5, ei)}fil are independent across i, where X; = (X;1,..., X;7) and ¢; = (€1, ..., 67)";

(iii) For each 1, {(Xit,eit)}thl is strong mixing with mixing coefficients «;(l) satisfying
a(l) = maxy<i<n {a;(1)} < Cup! for some C, < 0o and p € [0, 1);

(iv) (e, Ft) is a martingale difference sequence (MDS) such that E(e;|F;—1) = 0, where
Fi—1 is the o-field generated by {ejs,j =1,...,N,s=1,...,t —1};

(v) max; ; Ele; |38 < oo, max; ¢ E 1 X3| ¥ < o0, and max; ; Eoj, < oo for some 1 > 0,
where max; ; denotes maxi<;<ny maxj<;<r;

(vi) Var(Xy) = Q; (¢/T), where ©; () is a d x d matrix of bounded functions defined on
[0,1]. There exist some positive constants c,, and ¢, such that

0 <gp < min Tér[gfl] Pmin (2 (7))] < max s [Amax (€2 (7))] < Caz < 00;

(vii) Let Xff) = (1,X},) oy where 02 = 02 (X;;,t/T) and Var(f(i(f)) = QSU) (t/T), where

Q! (1) isa (d+ 1) x (d+ 1) matrix of bounded functions defined on [0, 1]. There exist some

)

positive constants gg? and 55;‘;) such that

0<df) < min inf Donin(f7 ()] < max Ti%?”[xmxmﬁ”) (1)) < &%) < .
Assumption 2. As (N,T) — oo, K — 00, K2/T — 0, NK/T? — 0, and N2T =34y () 4F4mvo
— 0 for some n > 0 and vy > 1.

Several remarks can be made for the above assumptions. For Assumption 1, 1(i) requires
the independence of regressors {X;;} and {e€;+}, which is also used in Robinson (2015) and Su
et al. (2018); 1(ii) imposes cross-sectional independence in the regressors and errors, which can
be relaxed to allow for weak dependence as Chen et al. (2012) or Robinson (2015) with much
complicated arguments in the proof; 1(iii) assumes that {(Xy,e€;),t = 1,...,T} are strong
mixing with a geometric decay rate, which can be satisfied by many well-known linear pro-
cesses such as ARMA processes and nonlinear processes; 1(iv) imposes a martingale difference

structure on €;; with filtrations {F;}]_,, which is also used in Chen and Huang (2018); some

11



moments conditions on €, X;; and o are given in 1(v); We assume the variance of X;; and
X l(t ?) are both time-varying in 1(vi)-(vii), and their eigenvalues are both bounded and bounded
away from 0. Assumption 2 provides the rate conditions on sample size (N,T") and the number
of sieve basis terms K, and it can be easily satisfied if T/N converges to a nonzero constant as

(N, T) — o0

3.2 Asymptotic Distribution

We first introduce some notations. Let Q;; = T™'1Z/M,.Z; = ZZ’ZZ/T with Z; = M,, Z; and
Qu,;i = T_lZZ{WiZi with W; = diag(w;1,...,w;r). We define a T' x T' matrix

Ki= M., ZiQ; 1 QuiQz ZiM., = Z:Q5 } QuaQs ) Zi,

and let K; ;s denote its (¢, s)-th element. Then denote the asymptotic bias and variance terms

of FNT as

Byt = \/7 ZZ’Cz tto'zt and Vyr = N 2 Z Z ICz ts zto-zs’ (31)

=1 t=1 i=1 1<t#s<T
respectively. The standardized testing statistic is given by

N2TT Ny — B
INT = NT — ONT (3.2)
VT

Under certain regularity conditions, we can show that Jyr follows a standard normal dis-
tribution asymptotically under Hy. However, the testing statistic Jy7 is infeasible because
By7 and V7 are both unknown. We can estimate By and V7 using their corresponding

sample analogs

N T
Byt = ZZ zttgrzt and Vyp = NT2 Z Z K: ts© ”té%ls’ (3.3)
=1 t=1 i=1 1<s#t<T

respectively, where &, = U — ; and 4; = T! Z?zl .2 Consequently, a feasible testing

statistic for Jyr is

. NY2TT Ny — B
Inr = NT — ONT (3.4)

Vnr

The following theorem gives the asymptotic distribution of Jn7 under the null hypothesis.

9 Alternatively, we can choose &, = Gt — G, — (@i — E), where 51 =7'r gl

12



Theorem 3.1 Under Assumptions 1-2, we have Jyt 4N (0,1) under Hy as (N,T) — oc.

Remark 1. The proof is complicated and relegated to Appendix A. The above theorem
indicates that our test statistic Jy7 is asymptotically pivotal under Hy. In principle, we can
compare Jnr with the one-sided critical value Za, 1.€., the upper ath percentile from the
standard normal distribution, and reject the null when J NT > Zo at the « significance level.
In practice, in order to improve the finite sample performance of the test statistic, we suggest
the use of bootstrap p-values and provide a procedure to obtain them, see Section 3.4 for the

details.

3.3 Asymptotic distribution under local alternatives

To study the local power property of the proposed test, we consider the following Pitman local
alternatives:

Hiqnr 2 Bit = Bo +yn1Agir and fiy = YNTAf (3.5)

where yy7 — 0 as (N,T) — oo, Mg = Ngi(11), Afie = Afi (1), Bgi(-): [0,1] — R? and
Ag;(+): [0,1] — R are all nonzero and continuous functions. Clearly, yn7 controls the speed at
which the local alternatives converge to the null hypothesis. Let ga 4 = X[, Agit+Agit, gai =
(91, - - gaar) and gas = X4, Ag, where Ag = [N | E(XIM,, Xi)] ' SN | E(XIM,.ga4).
Then we define

dnit = 9a,it — Gaie = Xi (Aga — Ag) + Ay and

L NT
Op NT = NT Z Z JA i Wit-
i=1 t=1
To study the limiting behavior of J N7 under the local alternative Hj 5., we need some
additional assumptions on the functions Ag; (-) and Ag; (-).
Assumption 3. For each i, Ag () for l =1,...,d, and Ay, () are all continuously differen-
tiable up to k-th order for some xk > 2;
Assumption 4. As (N,T) — oo, lim(y 1) Ag exists and ®p = plimy 7)o Pa, N7 > 0.

The following theorem gives the asymptotic distribution of Jn7 under Hy -

Theorem 3.2 Suppose that Assumptions 1-4 hold. As (N,T) — oo, JnT <, N (®a, 1) under
Hy g with yyr = N~VAT=1/2y 32
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Remark 2. (i) Theorem 3.2 implies that our test has non-trivial asymptotic power against
alternatives that diverge from the null at the rate O (N*1/4T*1/2K1/4) by noting that Vyr =
O (K) (see Lemma A.5 in appendix). The power increases with the magnitude of ®5. Clearly,
as either N or T increases, the power of our test will increase but it increases faster as T'— oo
than as N — oo. Similar patterns have been found in the testing literature of panel data
models such as Su et al. (2018). (ii) The local alternative H) ,,, includes the deviations from
Hy only along time or across individuals, which means that our proposed test can detect the
instability of homogeneous coefficients or the heterogeneity of TVCs.

To study the global consistency of Jn7 under H;, let yny7 = 1 in (3.5). Under Assumptions
1-4, we can show that plim y 7)o In7 = @a, By = O, (Nl/QK) and Vyr = O, (K) under

H;. The following corollary gives the global consistency of Jnr under Hj.

Corollary 3.3 Suppose that Assumptions 1-4 hold and N2TK=(/2425) _, (. Then under
Hy, N=12719 V2 iyr B @ as (N, T) — oo and .

Remark 3. Corollary 3.3 establishes that JInt diverges to oo at rate O, (N 12 /K 1/ 2) un-
der H;, which means that P(jNT > dyr) — 1 as (N,T) — oo for any sequence dyp =
o(NY2T/K'/?) provided ®5 > 0.

Remark 4. The choice of optimal number of sieve terms is important in practice. However, it
is still an open question in the literature of nonparametric testing for panel data models. One
possible solution is to maximize the power when the size is controlled by following the optimal
choice of bandwidth in kernel testing such as Horowize and Spokoiny (2003) and Gao and
Gijbels (2008). We leave it as a future research topic. In simulation and application, we adopt

a sequence of numbers of sieve terms and find them work reasonable well in finite samples.

3.4 Bootstrap version of the test

Even if Jyr follows N (0,1) asymptotically under the null Hy, due to the nature of nonpara-
metric estimation in the test statistics, it is well known in the literature that tests based on
nonparametric estimation usually suffer severe size distortion in finite samples if the standard
normal critical values is used (see Li and Wang (1998) and Su and Hoshino (2016)). As a result,
in order to improve the finite sample performance of our test, we follow Hansen (2000) and
propose a fixed-regressor bootstrap procedure to obtain the bootstrap p-values. The procedure

goes as follows:

14



1. Obtain Brg and 4; under Hy. For each i, run auxiliary time series regression of 4 on

X+ and constant with TVCs to get the fitted value gjt, residual &, ;¢, and then calculate
INT;

2. For each i, obtain the wild bootstrap errors {e;it} : €i,it = &,;t0it Where p;’s are IID
N (0,1). Then generate the bootstrap analogue Y;; of Yj; by holding the regressors X
as fixed: Y = XftBFE + & + € 4, where &; = 71 ZZ;I (ﬁit — gjt) )

3. Given the bootstrap resample {Y;;, X;;}, estimate the linear homogenous panel data

model and run N auxiliary time series regressions as Step 1. For each ¢ and ¢, denote

k
ryait?

the fitted value and residual as g;, and ¢ respectively. Calculate the bootstrap test

o s T Ak ok
statistic Jy based on {git,fr,it}'

4. Repeat Steps 2-3 for B times and index the bootstrap statistics as {j]"{,T »12_,. Calculate
the bootstrap p-value: p* = B~! Zle 1(j]’(,Tb > jNT).

It is straightforward to implement the above bootstrap procedure. Note that we impose the
null hypothesis of linear and homogeneity in Step 2. Let Wy = {(Xy, Yi) :i=1,..., N, t =1,

..., T} be the observed sample. Denote Q(Zi) =71 Ethl ZuZ!,€2,. The next theorem implies
the asymptotic validity of the above bootstrap procedure.

Theorem 3.4 Suppose that Assumptions 1-2 hold. Assume that 0 < min; Amin (Qg) <

max; Amax (Qg) < 00. Then as (N,T) — oo, JAX,T N (0,1) in probability, where d* denotes

weak convergence under the bootstrap probability measure conditional on Whr.

4 Extensions to Stability Test or Homogeneity Test

When the null hypothesis Hy in (2.15) is rejected, one may have interest in estimating the
models with heterogenous time-invariant coefficients or homogeneous TVCs. Then it is natural
to test the structures imposed by these models. In this section, we briefly discuss how to extend

our proposed test to these two cases.

4.1 Test for the stability of heterogeneous coefficients

When Hj in (2.15) is rejected, a natural choice is to estimate a panel data model with het-

erogeneous slope coefficients without time variation (e.g., Hsiao and Pesaran, 2008). Then the
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null hypothesis now is given by
Hyo: (B (-), fi () = (3:,0) for some vector B; € R? and all i, (4.1)

against the alterative hypothesis Hgq : (5; (+), fi () # (8:,0) for some i’s. To study the local

power property of the proposed test, we consider the following local Pitman alternatives

Hs1ynr : Bit = Boi + yNTApgat and fir = YNTA gt

where Yy — 0 as (N, T) — 00, Agit = Agi (1), Apit = Ay (1), and Ag; (1) and Ay (+) are
nonzero continuous functions of time regressors for some is.

Under Hy, the model (2.1) becomes the usual heterogeneous linear panel data model
Yie = XipfBi + i + €ir. (4.2)

One can estimate the individual-specific coefficients §; by the linear regression of Y;; on 1 and

X;t. With the simple OLS estimator, we can estimate §; and g;; by
~ -1 . ~
Bi = (X{M,, Xi) ™ XM, Y; and g = X},f3, (4.3)

respectively. The augmented residuals are given by 4 = Y — gir. As Section 3.2, we can run
N auxiliary time-series regressions and construct the test statistic I'yp as (2.27).

Define QX,i = X,M,. X;/T = XZ’XZ/T and QZX,i = ZIM, X;/T = Z;X;/T. Also define
a T x T matrix IC;r = ZJQ;gQwZQz_ZlZ;” and denote its (t, s)th element as ICLS, where ZZT =

Z; — XZQ;(le/ZX - Define the asymptotic bias and variance terms IB%EVT = ﬁ Zf\il ’CZttUiQt

and VTNT = 22 SN <tts<T ICszt ,0%02  respectively. Then the normalized test statistic is
J}LVT = (N 1/ 2TT N7 — IB%;rVT> / V}LVT. However, J}:]T is infeasible since IB%}L\,T and V}L\,T are not
observable. Let &, = U; — ; and @; = T71 Zthl ;. Then we can calculate the estimators
for bias and variance terms respectively by
Bl = 1%/@ &2 and Vi, = Qi S kPl
NT = NT - 1,1t it NT = NTZ R itsCraitCris

The feasible testing statistic is given by

Jir = (N TTnr = Bl7) 1/ Vi
Let gai = X Apit + Apir and ga; = (9aits---,9air) . Let Ba; = [B (XM, X;)] ™!

XE (X!M,,.gn;) and ga it = X[,Ba; under Hgj .. Then we can define ga it = gaie — gait

_ 1 N T <2
and PANT = §7 D img Dt A it Wit-
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Assumption 4*. As (N,T) — oo, lim(y 7)o Bai exists and Pp = plimy 7y_,00 Pa nT > 0.

The following theorem gives the asymptotic distributions of j]TVT under Hyo and Hgq -

Theorem 4.1 (i) Under Assumptions 1-2, j]TVT 4N (0,1) as (N,T) — oo under Hgp;
(i) Suppose that Assumptions 1-3, and 4* hold. As (N,T) — oo, j;r\,T LN N (®a,1) under
Ha1 oy with vy = O (N-VAT12V 7).

To study the consistency of j]TVT under Hyg, let vy = 1. We need to study the asymptotic
properties of I@;VT and V}LVT The following corollary gives the global consistency of j]T\,T under
Hys.

Corollary 4.2 Suppose Assumptions 1-3, and 4* hold. VEﬁN*l/?T*leT L dA as (N,T) —
oo under Hyg.
4.2 Test for the homogeneity of time-varying coefficients

When Hj is rejected, another natural choice is to fit a panel data model with homogeneous
TVCs, where the parameters are common across individuals (e.g., Chen and Huang (2018) and
Li et al. (2011)). Then one may be interested in testing for the homogeneity of TVCs. To be

specific, the null hypothesis under investigation now becomes

Hpo = (B (-) fi () = (Bo (), fo (-)) for some (Go (), fo(-)) and all i’s, (4.4)

against the alternative hypothesis Hp; : (8; (+), fi (-)) # (B (+), fj (+)) for some i # j. To facili-

tate the study of the local power property, we consider the following Pitman local alternatives

Hpiynr : Bit = Bo (1¢) + yn1Agt, and fir = fo (7¢) + YT Afits

where Yyr — 0 as (N, T) — 00, Agg = Mg (7), Apay = Mg (), and (A’W (), A (.)) £
(A’@j (), Ar; ()) for some i # j, Ag; (-) and Ay; (-) are all nonzero continuous functions of

time regressors.

When Hj;,y holds, the model reduces to
Yie = Xj,8 (1) + f (1) + i + e (4.5)

Noting that 8 (-) and f(-) are all unknown, as before, we consider the sieve estimation of the

above model (4.5). Let B} = BY (r;), B£1,t = BL, (1), and ZL = (Bth, (X ® BtL)/)’. Let
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Iy = (M., Mpp1) € RED with Wy = (f (1), By () and gy = (g0, ..., Mgpr—1)'
with Hﬁ,lk = <ﬂl () ,Bk ()) for k = 1, ceey L — 1 such that

f()=BE ()T;and B (1) ~ g, B () forl=1,...,d. (4.6)

Denote II = (I, vec(Il)")’, where Il = (Ilg1,...,1lgq) € RE*4 10 Using the approximations
in (4.6), we have g;; = X/,8: + f: &~ ZX'TI and the induced linearized panel data model is given
by

Yy = ZET + oy + el

ryat?

(4.7)

where Elﬁ = it +Tg,it, and rg i = Git — ZZ-Lt’H is the sieve approximation error of g;. The usual

FE estimator for II is

N -1 N
Mrp = (Z ZiL’MLTZiL> > zlm, v (4.8)

i=1 =1

Based on (4.8), the sieve estimators for II; and IIg are denoted by ﬂf and f[g, respectively.
Then f (-), B () and g;+ are estimated by

f()=BE ()1, 6(-) =TsBL (), and gu = ZE'Tipp. (4.9)

The augmented residuals are given by ;; = Y;; — giz. As Section 3.2, we can run the auxiliary
time-series regressions and construct the test statistic I'np as (2.27). Based on &, ;; = G — U
where 4; = 7! Ethl Uz, we calculate IEB}EVT and @?VT as (3.3). Then the feasible test statistic
is given by

jJiVT = (N1/2TFNT - BJ}VT) / VéF\/T'

Let gai = X,Agit + Apir and ga; = (gajs--- 9ar) . Let gagw = ZETIA, where
A = [Zfil E(ZZL’ZZL)]_1 Zfil FE (Z.iL’gA,i). Then we define ga it = ga it —ga,it and ®a n7 =
ﬁ Zi\; 1 Zthl giyitwit. We establish the limiting distribution of the test statistic j]i\,T in the

following theorem.

Theorem 4.3 (i) Suppose that Assumptions 1-2 and Assumptions 3 and 5 in Appendixz B
hold. Then JA}VT 4N (0,1) under Hypg as (N,T) — oo.

(ii) Suppose that Assumptions 1-2 and Assumptions 3*, 4** and 5 in Appendix B hold. As
(N,T) — o0, by % N (®a,1) under Hpy oy, with yxp = N-VAT-1/2y07%,

1ONoting that the constant term is left out in the approximation of f (-) to impose the identification restriction
[y f () dr = 0 automatically.
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To study the consistency of j]iVT under Hyp, let vy = 1. The following corollary gives the

global consistency of j]i\/T under Hip;.

Corollary 4.4 Suppose that Assumptions 1-2, 4-5 and Assumptions 3* in Appendiz B hold.
Then under Hy,q, V%ézN_I/QT_lj}VT L DA as (N,T) — 0.

The above result establishes that jji\,T diverges to infinity at rate O, (N 1/ ’T/K 1/ 2) un-
der H;, which means that P(JA}VT > dyr) — 1 as (N,T) — oo for any sequence dyp =
o(NY2T/K1/?) provided ®5 > 0.

5 Monte Carlo Simulations

In this section, we conduct a set of Monte Carlo simulations to evaluate the finite samples
performance of our proposed joint test for homogeneity and stability of coefficients. We consider
the following seven data generating processes (DGPs):

DGP 1. Homogeneous constant coefficient: Y = 2X;; + a; + €443

DGP 2. Homogeneous TVC: Yy, = fo (7¢) + Bo (1) Xit + o + €4t;

DGP 3. Heterogeneous constant coefficient: Y = 3; Xy + ay + €44, where 3; ~IID U [0, 2];
DGP 4. Fully heterogeneous TVC: Yy = 614 fo0 (7¢) + 02:00 (17t) Xt + ai + €it, where §y; ~I1D
U [0.5,1.5] and d9; ~IID U [-0.5,0.5];

DGP 5. Grouped heterogeneous TVCs:

0.25fo (1¢) +0.2500 (14) Xit + oy + €4, i=1,...,[N/3],
Yie = ¢ 0.5f0 (1) +0.580 (1) Xit + i + e, i=[N/3]+1,...,[2N/3],
fo (1) + Bo (1) Xit + i + €t i=[2N/3]+1,...,N;

DGP 6. Homogeneous constant coefficient with an abrupt structural break:

2Xp+ o +ey, t< T/2,
—2Xy+a;+ey, t>T/2;

Vi =

DGP 7. Homogeneous TVCs with an abrupt structural break:

fo () + Bo (1) Xig + i + i, t<T)/2,
0.5fy (Tt) + 1.505 (Tt) Xt +a;+ei, t> T/2.

Vi =
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Among all DGPs, the fixed effects a;’s follow IID N (0, 1), the regressors X;;’s are generated

according to

2exp [(m — p4) /0.1]
1+ exp[(m — i) /0.1]
with e, ~IID N (0,1) and p; ~IID U [0.05,0.1], and the error e;’s are conditional het-
eroskedastic as ;; = 1/0.05X2 + 0.5¢;; with e; ~IID N (0,1).1 In DGPs 2, 4, 5, and 7, we

set

Xit = 0.5a; + + €t

fow) =20 —v+1/6 and Sy (v) = 7 ixfx[ff@ 2'2).5/>0)3]-11’

which are used to generate the smooth trend functions and time-varying coefficient functions.
Similar function form for [ (-) is adopted in Su et al. (2018).
DGP 1 is for size study and the other 6 DGPs are for power study for the joint test of

homogeneity and stability. In the implementation of the specification test, we use the cosine
functions as our basis functions in the sieve approximation of unknown functions. To investigate
the sensitivity of our test to different choices of number of basis functions, we both consider
a sequence of numbers K, = LCT1/6J with ¢ = 1,2,3 and the number K., chosen by the
leave-one-out cross-validation (LOOCV) method!?. Different combinations of sample sizes are
used: T = 25,50,100 and N = 25,50. For each combination of sample sizes, the number of
replications is 500 times. In bootstrap, we consider 400 resamples for size studies and 300
resamples for power comparisons.

The simulation results for the joint test of homogeneity and stability in DGPs 1-7 are
summarized in Table 1.'2 First, for DGP 1, the empirical sizes of our test statistic are very
close to their corresponding nominal values (1%, 5% and 10%) either when we use a sequence
of numbers for the sieve terms or the LOOCV to choose the number of sieve terms during the
estimation. Second, the proposed test has good power for DGPs 2-7: (i) for all 6 DGPs, the
empirical power tends to 1 as either NV or T increases, and has a larger speed when T increases

than NV increases, which confirms that JInT diverges to infinity faster as T increases than N

1To save space, we only report the results for conditional heteoskedastic errors. The results for homoskedastic
errors are also availabe upon request.

PR, = argmingeep g, SN ST (e — §2(7t> (K) — éu,—¢ (K))? where ng) (K) and é&;(—¢) (K) come
from the ith auxillary regression of u;; on (X}, 1) with TVCs without using the tth observation and K or K —1

basis functions are adopted in the sieve approximations. The theoretical verification of LOOCYV is beyond this

paper.
3We also report the additional simulation results for the test of homogeneity for TVCs (Hpo vs Hp1) and the

test of stability for heterogeneous coefficients (Hso vs Hs1) in Appendix B.
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increases under H; as shown in Corollary 3.3; (ii) the power increases much faster in DGPs 4-5
(variation of parameter both along time and across individuals) than in DGP 2 (variation of
parameters along time) and DGP 3 (variation of parameters across individuals), which comes
from the fact that ® takes larger values in the DGPs 4-5; (iii) the empirical powers for DGPs
6-7 are close to 1 for all different scenarios, where the parameters are homogenous but have
jumps along time, even Corollary 3.3 does not cover the case with jump in parameters along
time. Overall, we can observe that our proposed test statistic performs very well in all scenarios

in simulations.

6 Empirical Application to Environmental Kuznets Curve

In this section, we apply our proposed test to study the Environmental Kuznets Curve (EKC)
of U.S. We are mainly interested in testing the validity of homogeneous linearity and stability
restrictions in model, which is widely used in the EKC estimation.

The EKC hypothesis is initiated by the seminal works of Grossman and Krueger (1993,
1995) and becomes popular in the World Bank. Both theoretical and empirical literature on
the topic is voluminous and continues to grow, and so do the controversial findings. Many
empirical works seek to establish an inverted U-shaped nexus between income per capita and
environmental degradation, which implies that the level of pollution increases until some level of
prosperity is obtained. However, the inverted U-shaped relationship is questioned by Millimet
et al. (2003), where a semiparametric partially linear model is used to fit the model and the
parametric specification is rejected. Recently, Li et al. (2016) detect multiple structural breaks
in EKC. These findings show that the regression relationship between income per capita and
environmental degradation may be misspecified and vary along time. Different from previous
studies, we reinvestigate the parametric specification of EKC using our proposed test.

We consider the following regression model
In Poly; = B14In Inci 4 Boe (In Incy) + fir + i + it (6.1)

where i = 1,..,N, t = 1,...,T, In Pol; is the pollutant emission of sulfur dioxide (SO3)
measured by metric tones per capita, In Inc; represents the income for state i at time ¢, o

is the unobserved state-specific fixed effect; (1 and (B2 are time-varying slope coefficients
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Table 1: Simulation results for joint test for DGP 1-7

K, Ky K3 Ky
DG T N | 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 25 25 | 0.020 0.066 0.126 | 0.010 0.044 0.090 | 0.010 0.050 0.094 | 0.022 0.066 0.126
50 | 0.012 0.056 0.110 | 0.014 0.042 0.084 | 0.008 0.046 0.106 | 0.012 0.056 0.112
50 25 | 0.012 0.040 0.078 | 0.010 0.034 0.084 | 0.008 0.046 0.106 | 0.012 0.040 0.078
50 | 0.008 0.042 0.094 | 0.006 0.054 0.114 | 0.004 0.052 0.124 | 0.008 0.042 0.094
100 25 | 0.008 0.056 0.114 | 0.010 0.046 0.092 | 0.014 0.054 0.106 | 0.008 0.046 0.098
50 | 0.008 0.060 0.106 | 0.008 0.058 0.126 | 0.008 0.062 0.110 | 0.012 0.060 0.110
2 25 25 | 0.144 0.404 0.568 | 0.036 0.192 0.316 | 0.000 0.068 0.128 | 0.148 0.408 0.568
50 | 0.288 0.568 0.752 | 0.104 0.244 0.444 | 0.032 0.108 0.216 | 0.288 0.568 0.752
50 25 | 0.832 0.972 0.992 | 0.664 0.900 0.968 | 0.452 0.736 0.868 | 0.832 0.972 0.992
50 | 0.988 1.000 1.000 | 0.932 0.996 1.000 | 0.752 0.952 0.980 | 0.988 1.000 1.000
100 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.996 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
3 25 25 | 0.128 0.332 0.488 | 0.084 0.216 0.344 | 0.024 0.112 0.232 | 0.128 0.332 0.488
50 | 0.160 0.420 0.612 | 0.084 0.236 0.400 | 0.044 0.160 0.292 | 0.160 0.420 0.612
50 25 | 0.426 0.724 0.840 | 0.320 0.596 0.736 | 0.244 0.500 0.632 | 0.480 0.724 0.840
50 | 0.744 0.936 0.964 | 0.604 0.844 0.928 | 0.464 0.740 0.868 | 0.744 0.936 0.964
100 25 | 0.872 0.956 0.988 | 0.820 0.948 0.976 | 0.752 0.920 0.968 | 0.892 0.976 0.988
50 | 1.000 1.000 1.000 | 0.980 1.000 1.000 | 0.976 1.000 1.000 | 1.000 1.000 1.000
4 25 25 | 0.612 0.832 0.936 | 0.284 0.572 0.728 | 0.088 0.248 0.420 | 0.616 0.832 0.940
50 | 0.900 0.980 0.992 | 0.676 0.860 0.924 | 0.196 0.472 0.644 | 0.900 0.980 0.992
50 25 | 1.000 1.000 1.000 | 0.996 1.000 1.000 | 0.944 0.996 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
5 25 25 | 1.000 1.000 1.000 | 0.976 1.000 1.000 | 0.800 0.932 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 0.996 1.000 1.000 | 0.964 0.992 1.000 | 1.000 1.000 1.000
50 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
6 25 25 | 0.884 0.976 0.992 | 0.716 0.924 0.968 | 0.116 0.304 0.472 | 0.844 0.952 0.980
50 | 0.988 0.996 1.000 | 0.920 0.984 0.996 | 0.152 0.444 0.644 | 0.968 0.992 0.996
50 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
7 25 25 1 0.936 0.992 1.000 | 0.708 0.892 0.968 | 0.076 0.248 0.392 | 0.940 0.988 1.000
50 | 0.992 0.996 1.000 | 0.936 0.988 0.996 | 0.124 0.388 0.616 | 0.992 0.996 1.000
50 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 0.980 1.000 1.000 | 0.976 1.000 1.000 | 1.000 1.000 1.000

Note: 1. Kg= {CTUGJ, C =1,2,3, K.y refers to the number of sieve terms by LOOCV;

2. DGP 1 is for size study and DGPs 2-7 are for power comparison.
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for the ith individual, and f;; is the heterogeneous time trend. Presumably, the time trend fj;
is related with pollution emission across countries. We apply our test the homogeneity and
stability of (81,it, B2,it, fir) jointly. The data used in our paper is from Millimet et al. (2003)14,
which includes 48 states (N = 48) and ranges from year 1929 to year 1994 (T' = 66). We
transform the metric tone measurement for SO2 emission into kilogram to achieve variables of
comparable magnitude as the per capita income series.

To apply the joint test of homogeneous and stable coefficients along both time and individual

dimensions, we first estimate the model under the null hypothesis, which is
In Poly = (1 InIncy + B2 (In Incit)2 + a; + €. (6.2)

The estimation and testing procedure follow similarly as discussed in Section 2. The FE

estimation of model (6.2) gives us that
By = 9.5706***(0.4358) and By = —0.5608"** (0.0247) ,

where the standard error is reported in parentheses. The estimators for 1 and [y are both
significant at 1% significant level, and we get an inverted U-shaped EKC. In the testing, we
run N auxiliary regressions of augmented residuals on In I'nc;; and (In 1 ncit)2 with time-varying
coefficients and trends. For the sieve approximation of unknown functions, we adopt the cosine
functions as basis and consider a sequence of numbers for different functions. We consider
K; = 4,5,6,7 in the approximation of the coefficient 5 () for InIncy, Ko = 4,5,6 in the
approximation of the coefficient (35 (+) for (In 1 ncit)2, and K3 = 3,4,5 in the approximations of
time trend f; (-)."> We report the p-values with 2000 bootstrap resamples.

The results for testing homogeneity and stability are reported in Table 2. We can find that
almost all the p-values are smaller than 0.01, which suggest the strong evidence of rejecting

homogeneity and stability restriction on parameters in model (6.1) even at 1% significant level.

7 Conclusion

In this paper, we provide a nonparametric test for the homogeneity and stability of parameters

in panel data models. After fitting the model under the null hypothesis of homogeneity and

14YWe would like to thank Daniel Millimet for sharing their data set.
15WWe don’t report the result for the LOOCV K because the LOOCV procedure always reachs the upper bound

K1 max or K2 max when we use different K1 max and K max for the used data set.
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Table 2: Bootstrap p-values for the joint test of homogeneity and stability (SO2)
(K1,K2,K3) p-value (Kj,K9,K3) p-value (Kj,K9,K3) p-value (Kj,K2,K3) p-value

44,3 0.0415 54,3 0.0020 6,43 0.0035 74,3 0.0130
44,4 0.0090 5,4,4 0.0030 6,4,4 0.0010 74,4 0.0300
44,5 0.0025 54,5 0.0005 6,4,5 0.0040 74,5 0.0295
45,3 0.0030 5,5,3 0.0035 6,5,3 0.0195 7,53 0.0020
4,54 0.0030 5,5,4 0.0005 6,5,4 0.0085 7,54 0.0305
455 0.0005 5,5,5 0.0015 6,5,5 0.0380 7,55 0.0040
46,3 0.0035 5,6,3 0.0010 6,6,3 0.0025 7,6,3 0.0005
4,6,4 0.0005 5,6,4 0.0135 6,6,4 0.0380 7,6,4 0.0025
4,6,5 0.0090 5,6,5 0.0340 6,6,5 0.0060 7,6,5 0.0005

stability, we obtain the augmented residuals. Then we run auxiliary time series regressions
of augmented residuals on regressors with time-varying coefficients via the sieve method. Our
testing statistic is constructed by averaging all the squared fitted values, which is close to zero
under the null and deviates from zero under the alternative. We show that the testing statistic,
after being appropriately standardized, is asymptotically normally distributed under the null
and a sequence of Pitman local alternatives as both cross-sectional and time dimensions tend
to infinity. A bootstrap procedure is proposed to improve the finite sample performance of the
test. Monte Carlo simulations indicate that the proposed test performs reasonably well in finite
samples. We apply our test the pollution emission data set, and we reject the assumption of
homogeneous and stable coefficients. In addition, we extend the testing approach to test other
structures on parameters such as the homogeneity of time-varying coefficients or the stability

of heterogeneous coeflicients.
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Appendix A

The appendix provides some facts, lemmas and the proofs of main results in Section 3.
Notation. Given sequences {a,} and {b,}, let a,, < by, (a,, 2 by,) denote that b, /ay, (a,/by)

~

is bounded, and a,, < b, denote that both a,/b, and b,/a, are bounded. When {a,} and
{b,} are stochastic sequences, a,, < b, (a, = b,) denote that b,/a, (a,/by) is stochastically

~

bounded, and a, =< b, mean that both a,/b, and b,/a, are stochastically bounded. For a
random variable X, let || X||, = E(IXIP)Y? for p > 1.

A Some facts and lemmas

We first state some facts and technical lemmas that are used in the proof of the main results
in Section 3. The proofs for these lemmas are given in Appendix B.
Note that we use the cosine functions basis B, (1) = (21/%cos (77),...,2Y? cos((K —

Dr7)) and BX (1) = (1,2Y2cos (n7),...,2Y2 cos((K — 1)77)) to approximate fiT (1) and
B;r (-) in the auxiliary regressions, respectively. Recall that B, = BX (r;), B_1; = BY (n),
Zi = (B'1 4, X}, ® By), Zit = Zix — Zi, and K; = Z1Q;1QuwiQs 1 Z;i. We give some facts and
bounds on them:

() ||T~! Ethl BB] — Ig||* = O (K?/T?) (see Lemma C.4 in Dong and Linton (2018));

. 2 2

(ii) suprepo,1] | B (1)||” = 2K — 1 and SUP-¢(0,1] | BE, (7)]|” = 2K — 2;

2 -

() 1Zal = [1BoralP + 1Kl 1Bl < supyepony 1B5 I (1 + 1Xal®) = 2K | K
where X = (1, X2,)";

: N = 112 _

(iv) < 201 Zul® + |Zi||") < 201 Zall® + T~ 11 11Zis)?) < 4K Ay, where Ay =

Zit
HXit i +77 HXis 2;
() Kot = ZQ5 Qui Qs i < Mo (Quo) M (Q52) [ Zat]|” < A (Qui) A (037 45 A
(i) [ICiss] < LTI = M (Qui) Amax (Q27) 4K A A1/,
Next, we give some lemmas and the first two are similar to Lemmas A1-A2 in Su, et al.

2

)

(2018) where spline functions are adopted as basis functions.

Lemma A.1 Suppose that Assumption 1 holds. Letg = (go,g1,---,9a)’, where gy = 0B () €
G={g()=0BE():0eRE} fori=1,...,d, and go = 0,B5, (-) € G_1 = {g () = ¢'BE, () :
0 € RE1) Then [lg)? = Sy Nl = 1017 where gl = E{T— 0 (r) Kl Kt (7))
with X = (1, X},)" and 0 = (0),6,,...,0,)".

Lemma A.2 Suppose that Assumption 1 holds. Let G = {g(-) = 0/B¥ (-): € RX}. Let G&¢
denote the collection of vector of functions g = (9o, 91,---,94)" with g € G forl=1,...,d and
go € G_1. Then for any € > 0,
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T T () Xie]® B B o B '
T L Blg(r) Xu]" 1l|>e] =0 (N ) for s =1,2;

N7 SN, ST () R ‘ .
> - — 1| > =0o(N .
NT) 3N, 5L Ela(r) Xu] €)=o(N7)

Lemma A.3 Let sz =T 1ZT ZisZ! o2 and Q(;; = ZT ZisZ! €2 . Suppose that

(i) P <maxi SUPgeg | xgod

(ii) P (Sngeg_l xg®d

18 28 (2 ’LS

Assumption 1 holds. Then
(i) P (c; < ming[Amin (Qz,)] < max;[Amax (Qz,)] <€) =1—0(N"1);
(i) P (¢, < mini[Amin (Qu,i)] < max;[Amax (Qu,i)] < €
(i) Plc: < mingAuin(QY7)] < maxiAnax (QF))]
(tv) P (max;[Amax (Qic)] < czvg) =1-0(N"1);
where ¢;, ¢z, ¢, Cw, Cio and ¢z, are some finite positive constants.

Lemma A.4 Suppose that Assumptions 1-8 hold. Then we have

(i) ﬁ Zz]\;1 ||7’A,iH2 =0 (K_%) ; and (ii) ﬁ Zfil ZtT:1 TQA,itwit =0 (K_%) :
Lemma A.5 Suppose that Assumptions 1-8 hold. Then we have

(i) Vyr = Oy (K); and (i) Byr = O, (NYV2KY/?).

B Proofs of main results in Section 3

In this section, we provide the proofs for the theorems in Section 3.

Proof of Theorem 3.1. Note that the limiting distribution of J n7 under Hy is a special
case of Theorem 3.2 with Ag; (-) =0 and Af; () = 0 for all i’s, or yy7 = 0. See the proof of
Theorem 3.2.1

Proof of Theorem 3.2. We first investigate the behavior of augmented residuals
under Hj ,,,. Recall that Ag = [El B (XM, X;)]~ ZZ 1E(X{MLT9A,Z')- Let va nT =
[EfleM Xil™ Zz | XiMipgni — Ag and vnr = [Ez | XM, X ZilelM &i.- By
the definition of Bp, we have Bp = Gy + 'YNTAﬁ Then 5FE — Op = YNTVA, NT —l— UNT = UNT
and G;;—0p = ’YNTA/M; where A/@ﬂt = Ag’lt—Ag. It follows that ga it —ga.i = X} (Bit — Bp)+

YNTAfit = INT (X{tA%,it +A f,it) = YNTJa,it, where ga i = XjAG , + Agi. Then
Uit = YNTIA it — XigUNT + @ + € and 4; = Yn1da; — XiONT + L1y + €. (A.1)

Using (A.1) and 'y = ﬁ ZZJL W, KC;ti;, we have

N
1 o 9 o y
Inr = NTZ ; (i + WN1dn: — Xivnt) Ki (8i + yN1dn: — XivnT) = Z Fﬁi)p (A.2)

s=1
where
N N
1 _— 1 ' (2) _ % 3) — 1 o) / Y
Iy = NT2 z:lgilcigia I'y T2 Z QAZ igng,  LUyp = NTZ ‘ZIVNTXi,CiXiVNT7
1= 1=
F(4) — 2ynT X TIC-En F(5) — X F(G) — —2ynT N & I X
NT = NT?2 Zlgi i9Ais L NT = NT2 Z & VNT; L NT = "NT? ZlgA,i iXiUNT-
1= 1=
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Using (A.2), Jyr can be decomposed as follows

. NY2TT Ny — B NT _
JINT =

e z NY2TTE) By — By | VA
yL/2 NT yi2 yi/2 L2
NT §=2 NT NT NT

We complete the proof by 5howing that, as (N, T) — oo: (i) Jyr = (Nl/QTF( ) BNT)/V1/2
N(0,1); (ii) JG = N2TT /2 = Ba + 0, (1) (i) J) = N1/2TF(ST/V1/§ — 0, (1) for
5 =3,4,5,6; (iv) Byr — Byr = 0,(K/?); (v) Yy /VNr = 14 0, (1). Note that the proofs for
(iv) and (v) are given in Propositions B.2 and B.3, respectively. We are left to show (i)-(iii).
Proof of (i). Write I’E\l,z[ = N1T2 Zf\il Zlgt;ﬁsST Kits€is€it + ﬁ Zf\il Zle Ki,ttsft =

FSVC}) + F%l}), say. Then Jy7 can be further decomposed as follows

NY2rr(e  NY2rT(E - By

) (b)
INT = + = Jyr + Jap, say.
Vg Vg NT T YNT
We complete the proof by showing that (ia) J](\?% —q N (0,1) and (ib) J](\I;)T = op(1). The
justification of (ia) is given in Proposition B.1 below. We are left to show (ib).
To show (ib), write J](\I,)%,, = T/Vl/2 where j](\l;gp = (Nl/QTFS\l,? — Bnr). Noting that

Vnr = Op (K) by Lemma A.5(i), we want to verify that j](\l;)T = 0p (K1/2). By the definition
of By7 in (3.1) and using €2, = oZ¢2, we write J](\I,))T = N-1/2p-1 Zf\il Zle Kiwnod (e?t - 1).

Let X = (X1,..., Xy). Clearly, E(JU).|X) = 0 by Assumption 1(i) and

N T
Var J( NI X ) = ZZ lttathar ) NT2 Z Z K 1t/Ci ssaztU@sCOV( €ty € z2s)
N N

i=1 1<t<s<T

By the fact (v) and Lemma A.3(i)-(ii), we have KC; 4 < Amax (sz) A2 (Q:4) 4K Ay < C. KAy

min

uniformly with C, = 4¢,c;?, we have V.J; < max;; E (e} ) Nz SN S KA 0E < KTQ

X (ﬁ Zfil ZtT:1 A?ta?t) = 0, (K?/T) = o0,(K) by the fact that the term in the pre-
vious parentheses is O, (1) by Markov inequality and moment conditions on Xj; and oy
in Assumption 1(iv). By Assumption 1(iii), {Ezt} ,—, are strong mixing. Then we have
|Cov (e, e2) | < 8a/ (1) (5 — t) 1B by Davydov inequality (Bosq, 1998). Then

it> €is ltH2+2nH6 H2+277
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for V.Ja,

|VJ2| NT2Z Z ’Czttlczssgto-zsal+n S_t Heth2+2nH€ H2+2n

=1 1<t<s<T

16C2K

2
SN Z Z AiAisofoa™ (s = 1) HetheranE H2+2n
i=1 1<t<s<T

2 2172 N
16C*K 1 n
2 2 2
[nﬁx(Hmngn)] 7; NT g 1 1<t§ » A Aiso05,07F0 (5 — 1)
1=1 1<t<s<

IA

2

S K? x V.J
where VJy = NlT ZN121<KS<T AztAZSa2 20/7/(1+’7) (s —t). Noting that V.Js > 0 and
E (V) < max; E(A%o})+ D i<t<s<T a"/(H”) (s —t) < oo by Assumptions 1(iii)-(iv). Then
we have V.Jy = O, (1) by the Markov inequality. It follows that V.Jo = O, (K?/T) and
Var(j](\?)T\X) = O, (K?/T) . By the Chebyshev inequality, J](V)T = O, (K/TY/?) = o, (K'/?) by
Assumption 2.

Proof of (ii). By Assumption 3, for given B¥ (-), there exist H(Aﬁ?)i € RE4 and Hgf’)i c RE-1
such that

gnit = Xi (D — Dgnr) + A = Zia; + ra, (A.3)

using the decomposition of Ag; (-) — Ag 7 and Ay, () similar to (2.22)-(2.23), where IIa; =
(Hg’)i/,vec(ﬂ(f,)i/))’ and ra ;; is the sieve approximation error. We have

N
Z ZZ{ICiZiHA,z’ + T’A’iICiTAJ' + 27“/A7¢]CiZiHA,i) = j](\?;) + j](\?;) + j](\?jcw), say,

where ra; = (rai,--- ,’I“AJ'T)/. First, noting that Z/KC;Z; /T = Z!W;Z; and using (A.3), we
) = NlT va 1 Ele gi,itwit "‘ﬁ sz\il Zthl TQA,itwit - % vazl Zthl JAGHT At Wit =
J](\?;)l + J](\?;)Q — QJS%, say. Clealry, j](\?;l = ®p + 0p(1). By Lemma A.4(ii), Ju](\?;)z =
O, (K 2”), and further j](\?% = O, (K™") by Cauchy-Schwarz inequality. It follows that
J](VT) = ®A + 0, (1). Second, we have J](\?;) = N1T2 Zfil T/A,iMLTZiQ;%Qw,iQ 1Z/M TAG <
max; Amax (Quw,i) Max; Amax (Q;ZI) ﬁ Zi:l TAJZ'Z'Q;}Z';TAJ < Ewgz._l max; Amax ( 1Zin',»}Zz{>
xﬁzi]\il Iradll® = O, (K~2F) by Lemma A.4(i) and the fact that T_IZ'ZQZ-_;Z‘{ has the
largest eigenvalue 1 because it is a projection matrix. By the Cauchy-Schwarz inequality,
j](\?jc) = O, (K™") = 0p (1). Then we have shown that JJ(\?% =da+0,(1).

Proof of (iii). When [ = 3, by the repeatedly use of 2’ Az < A\pax (A) 2’z for any symmetric

have .J ](\?;
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matrix A and conformable vector z, we have
1
3 o — — o
FE\/)T = NT2 Z V;VTXZ{MLTZiQ27f}Qw,in'7,}ZZ{MLTXiVNT
1 —1 o
< maX /\max (Qw Z) max )\max (Qz z) NT2 Z VNT LTZiQ,é,i ZiMLTXiVNT

< Cucs! Max Amax (T’lZ'iQ;%Z'{) IVNTH Z Z H

= 0,((NT)™) + 0, (ﬁw)} 0,(1) = o, <N71/2T71K1/2)

because of Unt = ynrvaNT+VNT = 0p (YNT)+O)p ((NT)_l/Q). Noting that V}\g =0, (K1/2)
by Lemma A.5(i), we have J( ) = N1/2TF(3) /V]l\{% =0, (1).
When [ = 4, we write FEVT = 2&%5 Zz 1 eilign,i = 27NT Z¢ 1 Zt 16”thGZ, where G; =
le,z‘leﬂ'Qz,i Z!M, . gn,i- Note that E(T NT|X) =0 by Assumptlon 1(ii) and

4 2 N T . 8 2 N . .
Var(FSéZHX) = ]\72];_‘2 Z Z{tGiG;ZitO'?t + 7]\72];3; Z Z{tGiG;ZZ'SO'itO'iSCOV (eit, 6@'5)
i=1 t=1 i=1 1<t<s<T

=vrs) + VI, say.

For VF%ZL), we have

it

o/
4a) 4’y QA,'QA,'
VINE = N;VTEZZ hQ5 QuaQz ZiMy =M, 2,/ T Q51 QuaQ3) ) Zad
i=1 t=1
4 g, gA
’YNT Z)\max ( - Z) Z thlew zQleQw zQ 1Zzt0’
4 A
< m&X)\?naX (Q 1) max A2 (Qu.i) ’YNT ( Z g ZH Z ’ 0'2' )
N T 1/2
1 2K 9 B Vi K
) N2 <T;Ai”ﬁ> —o, ()
P -

- N 272
2 in the second inequality,

47NT ( Z [[7%%

where we use Ay (771980, ) = T r (980, ) = T~
and in the last equation we use N~17~2 Efil lgaill* = O, (1) and N~ Zfil(T_l ST Ayo?)?
=0, (K 2) which can be easily verified by Markov inequality and moment conditions in As-
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sumption 1(iv). For Vl“gébT), by Davydov inequality (Bosq, 1998) again, we have

(4b 87NT
VPNT = N272 Z Z
i=1 1<t<s<T

’Y K 1/2 41/2 L YarK
RIS Sl AL A outi Nl el a7 ¢ )= 0, ()

i=1 1<t<s<T
<K A;t/ 2A3 8/ -1 I §A,i||2 uniformly in ¢,¢ and s in the second inequality and the last equation
can be verified as the determination of probability order of V.J5. %/ Chebyshev inequality,
). = 0, (v /K/ (NT)) = 0, (N"V2T-1K/2). Tt follows that J\3. = o, (1).

2,6:G 2| i el salorn, a5 (¢ =
itGiGLis Uztgzs||51t||2+217||518H2+2770‘ 7 ( s)

where we use the fact that | Z/,GiG' Zis| < T~ HgAZH Amax (Qu, ZQMIQUM) maX(Q;}) ’ Zill 1| Zss

When [ = 5, we can write I’g\%ﬂ = Funr, where F = N-IT— 221 1 €5 X;. Follow-
ing the proof of FS\%, we can show that I = O,(\/K/(NT)). Then we have ‘FEV)T’ <

0,(v/K/ (NT))[op (nr) +Op((NT)"V2)] = 0, (N"V2T-1K/2). Tt follows that J$) = o, (1),

When [ = 6, we have J](\?% = 0y (1) by Cauchy-Schwarz inequality.l

Proposition B.1 Suppose Assumptions 1-4 hold. We have J](\?% = NY21T 1a)/V1/2
N(0,1) as (N,T) —

N . %
Proof. Write JJ(\?T = v ZN, ZN = %Zi:l Z; with Z; = ﬁZnggT ’Ci,tsﬁiteis
NT

and ICMS = Kis0it0is. Noting that Z;’s are independent but not identically distributed (inid)
across ¢, we prove the proposition by the Linderberg-Feller CLT conditional on X. We complete
the proof by verifying Theorem 5.10 in White (2001). It suffices to show that (i) % =

NVar(Zy|X) :Var<J](\?%|X> =1+o0,(1); and (ii) EZ} < C < oo for all i.
Proof of (i). Noting that {¢;} are an m.d.s., we have

Var( \X) NTQVNT Z Z Kits€iteis

i=1 1<t<s<T

NTQVNT Z Z Z ICZ tlsllcz [ZED) (E'Ltl 62t2 6181 6182)

=1 1<t1<81<T 1<to<so<T

TQVNT Z Z ,Cz ts T TQVNT Z Z Kzi,tﬂfg ,éi,tgtg E (eit1 €ity 612153)

=1 1<t<s<T 1=1 1<t1#ta<t3<T

=1+ VJ](V%, say.

We are left to show that V'.J ](\7% =0, (1). For VJ ](\?%, we consider two cases for the time indices
tl,tg,tgi (al) ’tl - t2| > t3 — ImaXx (tl,tg) and (32) |t1 - tz‘ < t3 — ImaXx (tl,tg). Then we can
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write

N

4 . ~
i S S S LR (anend) = v, s
NT case (al)  case (a2)
For VJ](VT), we have |E (e, €65, )| < 8a/ (4 (|ty — ) l[€its ll2-42, ||€itp€ zt3H2+2n by Davydov

inequality. Then

64 max; ¢ ||€itlg 42, max; is (HQtG

stQ-i—Qn) ~
‘VJNT ‘ = NT2V yr 2 > "Ci’m
=1 1<t1<to<tz<T

~ _n_
Ki,t2t3 altn (t2 - tl)

_ 17(al)
& NT2VNTZ 2. ‘ it H w2 H ity “arh (s —t1) = Viyrp, say,
1 1<t1<to<ts<T
where Zl*t = Zitait. Note that
(al) .
£ (V) < s 0 (120 |25 |22]°) 7y z S Y atwon

1to=t1+t3—t2 tg=to+1

< max E <HZZtUZt

)T?VNT Z 2. Z 0T (t2 ~ 1)

=1ta=t1+t3—t2 t3=t2+1
T—-2T-1

S 7 30 > et ()= 0 (K/T) = o ().

t1=1 (=2

By the Markov inequality, we have WS\%) = 0p (1) and then VJ](\?T) = op (1). For (a2) with
t1 < ty < t3, we have ‘E (fzt1€zt2 €its )‘ < 8o/ (141 (Ats) Hﬁztleztzuzmn He
tg — to. Then

2
E ’VJJ(\?T) < 64 max (Hﬁz‘tfisHHzn) max (Hezth2+2n>

T?VNT Z > <"€ivt1t3

=1 1<t <to<t3<T

ity H2+277’ where At3 =

ICi,tgtg

) ot (Ats)

N m@xE (HZitUit
7’7

> NT2V 7 4 Z S athi(Aty) = O (KY/T)

=1 1<t1<to<t3<T

It follows that V.J ](\?721) = Op (K?/T) = 0p (1) by the Markov inequality.

Proof of (ii) Note that

16 ~ ~ ~ ~
4 E
(Z |X) T4V2 ’Ci,tltg lCi,t3t4 ICi,t5t6 IC’L',t7t8 E (ﬁ’itl €ito €its €ity Eits Citg Citr Eitg )
NT 1<ty <to<T,1<t5<te<T
1<tz <t4<T 1<t7<tg<T

= DJi+ -+ DJy, say,
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where DJ;o, ..., DJ;7 denote the summations of terms with 2, ..., 7 different time indices in the
expectation, respectively. Note that the expectation for any term with 8 distinct time indices
is 0 since {e;;};_, is an MDS.

First, we consider the case with two different time indices (DJ;2). We have

16 16C2K*
DJZQ T4V2 Z Icl tit ( ?h ;lt2) < T4V2 Z A?tlA?tQ ( €it, € ?tQ)
NT 1<t;<t,<T NT 1<t1<to<T

=0, (K*T7%) =0,(1).

because of ICl s < ’ei,tt’éi,ss < Cfa?taftAitA,-s. Similarly, we can show that DJ;3 = O, (KZTfl).
Second, we consider the case with four different time indices (DJj4). As we will see from
the proof of DJ;7 below, the leading term in DJ;4 is
DJth S T4V2 Z (’Cz 15Ks lg T KitsKiaKigoKi JIS) E (e hers 612162 ) = DJz'?l +DJ} i42> 52y
NT tzs#17q

where 8 time indices form 4 different pairs. Let QZ = Q;}Qw,iQ;%. For DJZSH, we have

1 2
2 2 2 2
DJ41 < ?zlfsa(;l( {E ( €it€isCil € )} T4V%\[T (Zlgt,s<T,Cz ts)

S
T VNT

[ 5 (@000 +op (1)
NS Q1) Qi) Qi) +0p (1)
;M (Qui) manss N (@21) max A2, (@47) ]
min; X2, (Qu.i) mini Ay, (@77 ) ming A2y, (7))

) ) 2
(ZlgungZitQ;gQw,iQ;% ZisUitUis>

2

IN

+0,(1) < C < 0.

For DJ;‘4‘2, we have

1 o
DJ 9 < {rllesax{E( ?tegsefle?q)} T4V?VT Z KitsKi 11K 14Ki g5
tEsAA
Z Uiszz{séigiZitzl{tQiU?lZil@iangiqéizisais
NT ta£s£1q
_ tr (Q“ QiQZ-Z)Qng?Qng?QO (1+0,(1))
~ o o) < 2
(N o (Q)6:QG:)| 1+ 0, (1)

Now, we consider DJ;;. Without loss of generality (WLOG), let s < -+ < s; be the
rearranged time indices, and two t;’s take the same value s7. Otherwise, the expectation should

1
~ T2

=0, (K_l) < 0.
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be 0 because {eit}thl is an MDS. Then following the proof of Lemma A.1 in Gao (2007)7 let
di be the first largest difference among {Asji1 = sj41 — 55 }] , - Noting that E(H 1615]) =0,
we can apply the Davydov inequality to E (Eisl6i52€i536134€w56Z56 Z57) by separating the set of
time indices into two subsets {s1,...,s;+} and {s;j41,...,s7}. Then we have

2 _ 2 J* 6 2
|E (Eisl 6i826i836i546i556i566i37)‘ = ‘E (6i51 €iso 6i536i546i856i866i57) - F (Hj:15i8j> E (Hj:j*Jrl&iSj €isy
j* ] 2 6 ] Ui
=8 HHJ:leZSi €isy L Lj=j+s16is, 2+2n o (da)

2+2n

and

6
128C?2
|DJnT7| < T4V27 > > Tt (dl)}
NT jx=11<s1<-<s7<T
AS *+1—d1

I |2

Z DJ'L?J )

187 ’LSl

and
2+4-2n

Hl IH i8]

= . . VA 6 o2
where C7 = MaxX;,s;,...,s7 MaXj*=1,...6 <“Hj1615j HH‘j:j*—f-le’lSjE’is7

2+4-2n

2
DJi7j* T4V2 E a1+77 dl H is7
NT 1<s1<<87<T,As; *+1—d1

for ¥ =1,...,6. We show that mi7j* =0, (K2 ) for all j* .., 6. For example, when
7% =2, we have

*
iS]

iSs7

E(DJim) < max E (\

1,81 ,..-,S7

I |2

2
JF— D VRS 05
NT 1<51<89<-<s7<T, Asg=dy

4 T—-5T—-4 so—1 so2+2d; sa+dy  ss+d; min{se+di1—1,T}

Sl Y X oY oYY et

T sy=2d)= 2 sy=max{sa—d1+1,1} sa=s2+d1+1 s5=s4+1 sg=s5+1 s7=s6+1

4

Similarly, DJy7j+ = Oy (K*T73) for j* =1,3,...,6. It follows that DJ;7 = op (1).

For DJ;s, WLOG, let s; < --- < sg be the rearranged time indices. Then we have: (a)
three t;’s take the same value sg; (b) two t;’s take the same value sg, two t;’s take s; for
some j < 6, and remaining 4 t;’s take different values. Without confusion, we decompose
DJig = DJZ-(G) + DJ (6) according to two subcases (a) and (b). For subcase (a), following
the proof of DJ”, we have DJ( 9 = O, (K*T—3). For subcase (b), we further decompose

Z] D 16], where DJ, (63) corresponds to the term with two t’s take the same value

sj for Jj=1,...,5. We first consider DJ () Let d; be the first largest difference among
Asg, Asz, Asy, and Ass. Then we have 4 subbubcases according to d; = As;« for j* =1,...,4,
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respectively. By Davydov inequality, we have

e e e 2 2N B (e e e e 202 i 2 2 114
|E (61816182628351846i55€z‘56)‘ = ’E (628152825153628461‘s56i36) - E (Hj:lﬁzs]') E <6i556isgnj:j*+1615]‘)‘

S 8 HH“;ZIEisj

aliin (dl) )
y

2+2n} '

4
) x ST EDJ) ..
=1

2 2 4
(S an x4 1€4ss
2421 185 ZS@H‘jf‘j +1%285 9249

where we separate {s1,..., s} into {s1,...,s;+} and {sj=11,...,s6}. Let

— 2 2 4
Ces = max nax {HH] 1 €is, €5 €isg L Lj—j*+16is;

1,81,.-,56 J*

2+42n

Then following the proof of DJ;7, we have

iS5

E|DJQ)| <8Ce max E <‘

1,81,.-.,56

Hl 1H 1Sy

H 236

b 1 o b
where EDJZ(&%J* = T4I§/2 D i<si<- <56<T Asjr 1 =dy o/ (40 (dy) for j* = 1,2, 3, 4. For EDJi(6g)71,

we have

T—6 T—6 s1+2d; s3+dy S4+dq

T
EDJigy, = T4V2 )ID D DD VIS DI DECLLI

31 1d1=2s3=s1+d1+1 sa=s3+1 s5=s4+1 sg=s5+1

= T4V2 Z Z Z dtaT7 (dy) = O (K*/T?).

81 1di=1s6=1

Similarly, we have EDJS) . = O (K*T~2) for all j* = 2,....4. It follows that E ‘DJZ%’%‘ =

O (KZT*Z) and DJi(gg) =0, (KZT*2) by Markov inequality. Now, we turn to the term DJi(gi.
Let dy and dy be the first and second largest difference among Ass, Ass, Asy, Ass and Asg.
We consider two subsubcases for DJi(gé)l' (bl) dy # Ass and (b2) d; = Ass. Let Dt](ﬁi1 and
DJ (b)2 be the corresponding terms for (b1l) and (b2). Then we have D,]i(g)l = D,]i(&)11 + DJi(GiQ.
Following the proof of DJ;7, we have DJZ}(().Z)11 = Op (K?/T?). For the subsubcase (b2), it
must be dy = Asj, where j = 2,3,4,0or 6 since di = Ass. We can decompose DJi(giQ =
DI, + DI+ DI, + DJ%Z%, where DJ{),  is the term with dy = As;. For DJjg)y,,
we apply Davydov inequality to get that

|E (€isy €isisy €rs, €iss €asg ) | = | E (€isy €isa€isy€is, €iss€isg) — B (€isy ) B (Eisy€isy rs, €iss €asg )|
2 2 =
<8 ||6i31 ||2+277 “6i8261536i346i856i56 H2+277 ot (d2)

by separating {si,...,s¢} into {s1} and {sg,..., sg} according to the second largest increment.
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— 2 2
Let Cgy = max; sq,...,s6 {H6i31 ||2+277 H5i826i536i546i556i56 HQ.}_QW}' Then we have

] |

T—6 d; s1+2ds s3+de T—4 min{ss+di+d2, T}

T4V2 ISP > > > o (d)

T 5= 1d2 2 s3=s1+do+1sa=s3+1d1=2 sg=s4+d1+1
T

< T4V2 Z Z d2a1+n =0 (KQ/TQ)

NT g,=2d,=1

T %

1S5 iS6 5]

©,51,..-,56

1 _n_
B[ D3] < o ma E(H ) T ot

T4 2
Vivr 1<s1<-<s56<T
Aso=ds,Ass=d1

and DJ (64)122 =0, (K 2/ T2) by Markov inequality. Similarly, we have DJz(Gz)u] =0, (K 2 /T2)
for j = 3,4,6. Then DJ{), = O, (K2/T?). Tt follows that DJ{) = O, (K2/T?). In the
same way, we can show that DJz(Gj) O, (K 27 ) for 7 = 1,2,3. Then we have 4 subsubcases

according to di = Asj« for j* =1,...,4, respectively.
Similarly, we can show that DJis = Op (K?*T %) + 0, (K?*T?) + O, (K*T"!) = 0,(1). =

Proposition B.2 Under Assumptions 1-4,, we have Byr — Byr = op(Kl/z).

A ~ = — V(C) Y
Proof. Note that &, ;; = @y — U4; = €4 — & + YNTIA it — X;;Unt under H .., where

g(AC)it = gn,it — EA@ Xit = Xt — X, @,EM and X; are time series average of €;’s, mait's and
Xit’s for the ¢th individual, respectively. Then we can write

~

Byt = \FT Z Z KCi e (5zt —&+ 'VNTQ(A)Zt ZtVNT> Z By,

=1 t=1
where
5 _ 1 N T 4. 2 5 _ 1 N T 4 =2
By = W Z¢:1 Zt:l Kz,tt%gv , Bnr2 = VNT Zi:1 thl ’Cz,ttEi,
I — INT N T . v(C) 5 _ 1 N T . v/ v . Y
Byrs = YNT 2wi=1 D=1 Kie Init) Byrs = VNT > i1 2ot—1 Kiulnp Xa X On,
5 _ 2 N T _ 2 <(c)
Byts = 57 Yoimt 21 Kigt€iti, Brrs = VNT ZZ Dy e HELIA it

0 = _2 N T LYy _27NT <(c)

Bynrr = A S S KinenXhinr, Byrs = > :l D) :t 1 it &g
~ - —9 N T — N v O
Byt = =55 2 i1 2o K XOn,

=(c)
*\/NT i:th:l LttgA,itXitVNT'

We complete the proof of (iv) by showing that Byr1—Byr = Op (Kl/Q), and Byps = Op (K1/2)
for s =2,...,10.

First, we have shown that j](\l,))T = Bnyy — Byr = Op (K1/2) in the proof of (i) of Theorem

N _ — —1-
i1 &0 (Kh) = i il Etr(Qz; Qua) < ¢ 'ewk X

(77 LN 82) = OWY2KT ) = o, (KU/2) . Third, Birs < Cordp KNY2 57 SN Y1) Aulg) )2

3.2. Second, we have Byry < ﬁ >
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A . 2
= 0y (KN'23%) = 0, (K'/2) . Fourth, By < CLENY o |* s I, S0, Au [ X

= O,(KNY2|lonr|?) = op (Kl/z). By the Cauchy-Schwarz inequality, we can show that
BNTS = 0p (Kl/z) fors=5,...,10. m

Proposition B.3 Under Assumptions 1-4, we have VNT/VNT =14o0,(1).

Proof. We consider the following decomposition

- ~2 2 2
VNT - VNT 2 E E ICZ ts rzter is 5115515 T2 E § ’Cz ts ztszs — 04,05 )

1=1 1<s#t<T i=1 1<s#t<T

= AVE\?)T + AVES)T, say.

We first show that AVE\‘;)T =0, (K). Let gt = &; +7NT§(AC,)¢t —X{tﬁNT. It is straightforward
to verify that

ﬁzzeﬁ"” _1) and ( ]VlT Zzngt _2) . (A4)

i=1 t=1 i=1 t=1

We rewrite A\A/S\%ﬂ as

N
2 A A A A

D) g § IC@tg (57",1'1‘,57“,1'5 - 5it5'is) (5r,it5r,is + 5it5is)

=1 1<sA<T

N

2 ) v v v v ) v )
= N72 E E - Kits (ERriiteis + ERiscit + ERisE Ryit) (28i4Cis + ERit€is + ERyisCit + ERLisER,it)
=1 1<s£t<T

A =

=2
)ﬂl\!)

[\

N

2

= NT2 Z Z K7 ts (4&?13611:63 it +4ER itER,isCitCis T+ 4€R Eh 48R Zth is€it + gR i Zt)
i=1 1<s#(<T

by the symmetricity between time indices ¢ and s.
First, we can decompose AV%)T , as follows

N T T T T
AV K2 S'VN K2
NT 1= NT2 i,ts 7,5511551 i,ts zsgltgA Jit
i=1 s=1t=1 i=1 s=1 t=1
N T T 8 N T
o LY Kk - o 3 S K uhéna
i=1 s=1 t= i=1 t=1

1
= AVS\%“,H + AVS\%‘,U + AVE\CIL%H?; + AV%%‘,M’ say.
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By Cauchy-Schwarz inequality, we have

N T 1/2 1/2
‘AVE\%“,M‘ > (NT Z Z K tt%) (NT Z ZgR zt)

i=1 t=1 i=1 t=1

=170, (K*) 0, (T7/?) = 0, (K*/T%?2) = 0, (K)

by (i) in (A.4) and the fact thatyy S, 7, Khyeh < CIKY (Jp SN, ST, A48 =
O, (K 4) where the term in parentheses is O, (1) by the Markov inequahty and moment con-

ditions on X;; and ;. For AVEV%“H? we first define V. ; = T-1/2 Zt 1 thtfzt Then we
have

T
‘AVNT 11‘ - ‘ ° T2 ZZZ’C?,tSE?SEit@

QZZZSZ'LS 'LsQZ ZtZzt€Zt>

500
]
1]
[

1 Y y ]
N Z tr (Qi@s,i@i%,z) T'/%,

[ Vil 772

1/2

N
L 1/2 | X
(Nzu@z QL)Q: \TW-() (NZHVZ,EHQ>
i=1 i=1

=87"! ( VNT 111)1/2 (AVE\%“,112>1/2’ say,
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where Q.; =T~} ZST 1 Z; s 7! &2

18 ’LS

and Q; = Q3! Qu,iQ5 . Note that by Lemma A.3
2V = £ 50 (008020000 (Tw@f

i=1
e (0 (1)’

< max )\ﬁlax (Q Zl) max )\ﬁlax (Qui) max Amax (Qg) % i\[: (T1/2§i)2 % i tr (ZlSZz,,sezQs>
j s=1

1 4
< rnax )\fnax (Q ) max Ap oy (Qu.i)

H[ij

.4
because of max; (T‘l ST ef}s) = max; <T‘1 ST Eefs) +o0, (1) and max; <T‘1 ST ‘ Zis 0215)

< 4K? max; (T‘1 Zz | A2 4) = 4K?max; (T‘l ZST:1 E (Ao} ))1/2 + 0p (1), which can be

18 ZS 18 ZS

shown as the proof of Lemma A.5 in the online supplementary material to Su, Wang and Jin
(2018). Second, AV, 11y = b SN S ST (2,202l Zisoisoucaeis) = Op (K2) by
the conditional Markov inequality with the fact
N7 o
E (AV%)TmyX) = E Y Y [ZZ-SZZ{SZ 2! 03504 E (eztezs)]
i=1 s=1 t=1
;| N7
= w7 2|
i=1 s=1

.4
Zi|| 0LE (6127&) =0, (KZ) .

42



It follows that AV%)T’H =0, (K?*/T) = 0y (K). For AV%)TJZ, we have

‘AVNT 12‘

N T T
2
Z § : E :ICz ts ngztgA Jit

1 s=1t=1

N T T
R DI IPIL (BRI

i=1 s=1 t=1

= 8YNT

N
101 v v
< 8yn7T UQN ; HQZ‘QZ‘,&QZ‘

T
1 ..
N E ZitZz(tg(AC)itgit
' VT 1= 7

1/2 N 2
v v 1
< 8ynrT V2 Ztr (@ief)d.0.01)a:) =53 f Z ZuZ4i 8 e
i=1
= Sy T120, (K” ) 0, (K) = 0, (K).
Similarly, we can show that AVE\C;)T’K,) =0, (K*T~'/? lvnrl]) = op (K) . It follows that AVE\C;

op (K). R
Second, for AVS{%Q, by Cauchy-Schwarz inequality, we have

N
o) _ 8 SRRV
AVNT,2 T NT2 Z Z Kz‘,tSSR,iﬁR,is&it&is

i=1 1<s#t<T
1/2 N 1/2
8 2y
< NT2 Z Z ’Cz ts ztgzs NT?2 Z Z 5%%,2'155%2,1‘5
i=1 1<s#t<T i=1 1<s#t<T
1/2 9 1/2
804K4 = 2 42 22 8 o~ (1 2
= Z AztAzs it€is N T ERyit
i=1 1<s#t<T i=1 t=1
— 0, (K) 0, (T) = o, (K).

Similarly, we can show AVS\C;) =

AV = o, (K).

For AVES)T, let é2;4 = 6@21‘, — 1. Then we can write

NT NT2 Z Z ICZ ,ts Zto-zs 262 Jit + 62 Zt€2 28) AVE\?? + AV

1=1 1<s#t<T
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NT > SaY-

71—

T.s = 0p (K) for s = 3,4,5 by Cauchy-Schwarz inequality. Hence,
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For AV(Y, we have BE(AVVY|X) = 0 and

Var (AVNTl ’X) N2T4 E E E ]C'L 181 ztl zsllcz toso ’Ltz 132 Cov (62 ity €2 th)
i=1 1<s1#t1 <T 1<s9#t2<T

o N /1T e 2 7 .

< NorE 2 (TZ’Z“ “3s> >z
J; = , t=1

+ N2T4 ( Z’ is> Z ’
1<t

<t<s<T

4, _
o Var (€2,it)

2
° ° 2 2 . .
Zit|| || Zis|| 050i5Cov (€g,it, €2.is)

2
8 ‘

by following the proof of V' .Jy. It follows that AVS\%) = Oy(K?/V'NT) = 0, (K) . For AVS\%),

we have

B(AT2)|X) NT2 Z S K2,.Cov (¢4, €) = 0, (K2/T) and
i=1 1<s7ét<T
Var(AV(bQ) N2T4 Z Z z ’Cz t181I€:l tQSQCOV (62 ity €2 131362 zt2€2 152)

=1 1<s1#t1 <T 1<s9#t2<T

=0, (K*/(NT?))

by following the proof of Lemma A.1 in Gao (2007, p.193). It follows that AVS\%) =0, (K?/T)+
O, (K/(Nl/ZT)) = 0p (K'). Then we show that AVES)T =0,(K). m

Proof of Corollary 3.3. Under the global alternative Hy, we have Uyt = va NT + UNT =
0(1) + O,((NT)"/?) = 0, (1). Then

N
1 y y y y
I'nt =+ > e+ Gnq — Xivnr)' Ki (e + gas — Xinr)
i=1
1 N
= 73 > {eiKigi + ga Kida i + e XK Xint + 261Kidai — 20h KiXivnr — 265K Xivnr |
i=1

6
= Z Inry, say.
=1

Then we have (i) Dn71 = i >y {Zt DS D YD ;At}gzsgzt’c% 1s=0p (TTK) +

Op (N71/2T71K1/2) ; (11) FNT,l = ®p + Op (1), (111) FNT,3 < ”VNTH = Op((NT> ) + op (1)
Then by Cauchy-Schwarz inequality, we have |I'y7;| = o, (1) for [ = 4,5,6. It follows that
Fnt = @A +0,(1) and P (I'yy > ®a/2) — 1. In addition, we can still show that Vypr =
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Vo + 0, (K) for some Vg = O(K) and Byr = O, (Nl/QK). It follows that

~ ~ 1/2 N
A N1/2TPNT —]BNT VNT / N1/2TFNT _BNT
Inr = f-1/2 N7

—1/2
NT v

0
N'2T0,

= (140, (1)) ( ) + (N1/2K)> o, (TN1/2K71/2) ‘

(1
O (K172

Consequently, we have P (jNT > dNT) — las (N,T) — oo forany dyp = o (TNI/QK_I/Q) y |
Proof of Theorem 3.4. Let P* denote the probability measure induced by the wild bootstrap
conditional on the original sample Wy = {(X4,Yy) : i =1,...,N, t = 1,...,T}. Let E*
and Var* denote the expectation and variance w.r.t. P*. Let Op- (-) and op« () denote the
probability order under P*; e.g., by = op= (1) if for any € > 0, P* (||byr|| > €) = op (1). We
will use the fact that by = op (1) implies that by = op= (1) .

Observing that Y} = X&BFE + &; + £ 4, the null hypothesis of homogenous and time-
Invariant coefficients is maintained in the bootstrap world. Given Wnr, €} ;; are independent

across ¢ and ¢, and independent of X for all 4, ¢, j, and s, because the latter objects are fixed in
N
the fixed-design bootstrap world. Let F;* be the o-field generated by {aj’ﬂ, e ,ejﬁ.T} . For

i=1
2
each 1, { F } is an m.d.s. such that E* ( er il Fie 1) =& i E (0it) = 0and E*[( :1t> |F ]
= z—fm-tQE (Qit) T - These observations greatly simplify the proofs in the bootstrap world.
Note that @}, = —Xj,vyr + i + &), where vy = SN XM, X SN XIM, et and

Lr=ra
/
5;5,1' = (E;il"'wgriT) :
Let I'yp, B, V}kVT, N and VNT be the bootstrap analogues of I'n7, BT, VN7, ]BNT,
and VNT, respectively. Then

th’

1
Tivr = NT? Z (er.a — Xovir) Ki (€50 — Xovivr)

N N
2 1
T2 E erilieri — NT? E erili Xivir + NT? § VN XK Xivir
i=1 i=1
1 *3
=7(h - 2F§VT) +102 say.

We decompose jj{,T as follows

* * (*2) (*3) * B* 1/2
. NVRITY, - By, (JNT eN2Trs  NY2TTGY L Bar - JB%NT> VT

NT = (L2 V2 vi/2 L /2

NT NT NT NT NT

In particular, we can show that: (i) Ji, = (Nl/ZTF}k\E) IB%}‘VT)/V“/2 & — N (0,1), where

d*; (ii) JJ(\?% = Nl/QTFE\?ST/V*%Z = op~ (1) for s = 2,3; (iii) IB%NT — By = op:(K/?); (iv)
Vr/Vye =1+ o0p-(1).
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We only outline the proof of (i) as we can follow the proofs of Theorems 3.2 to show (ii)-(iv).

o el 1 N 1 N T 2 (1 «1b
Write FNT) = 7T 2im1 Zlgt;«éng Kitser iserit+ 7 Dim1 D=1 Kitt (6:,1'15) = FSVTG) +F§VT)7
say. Then Jy, can be further decomposed as follows

o N27ri) . N2l — By,
NT = ¥ NCER
VNT VNT

We complete the proof by showing that (ia) J](\;F;) LN N (0,1) and (ib) J](\}k? = @(1).7 For
(ia), analogously to the proof of Proposition B.1, we can show that J ](\;;) =N Z}(V, Z*N =
% ZZ]L Z* with ZF = *1/2 Zl<t<s<T K; +s0it0is and ICL ts = Kitséritéris. Noting that Z’s

NT
are independent but not identically distributed (inid) across i conditional on Wy, we prove

(ia) by the Linderberg-Feller CLT conditional on Wy7. It suffices to show that (ia.1) 632 =
NVar* (?R) :Var<J](\;ﬂ;)|WNT> = 1; and (ia.2) E* (2}) < C < oo for all 4. For (ia.1), noting

that {o;1} are iid across ¢ and along t, we have

* *b
= I

Var* (J](\}k;)) W Z Z ICz tsgr ztsr lSQthZS
NT i=1 1<t<s<T

NTQV* Z Z Z ICZ Jt1s1 IC?, t232 (Qitl Oits Oisy QiSQ)

=1 1<t1<81<T 1<to<so<T

NTQV}*VT Z 2, Kiu=1

i=1 1<t<s<T

N 2 . :
by noting that Vi, = 5= >iey S icres<r KG1sE2 4E2 i For (ia.2), note that

v v}

16 o o
* x\4 *
E [(ZZ ) } Tiye. g Kot t01Cs 564 ICi 56 ICi 185 2™ (it Qity Oits Oity Oits Qit it Oits )
NT 1<t <to<T 1<t5<ts<T
1<ts<t4<T.1<tr<tg<T

= DJ; + DJj5+ DJ}y, say,

where DJ5, DJ%, DJ}, denote the summations of terms with 2, 3, 4 different time indices in the
expectation, respectively. For DJ%, we have DJ}; = TW*Q D i<t<s<T IC4tS AT iter, 2B (oh) E* (o) =

Op+ (K?/T) by noting that Vi, = Op+ (K); for D.J};, we have

DJ; < T4 Z (lCZ ts vz g T ’éi,tsléi,tlléi,lqléi,qs) = DJjy, + DJjy, say.
Vi t#sHAl#q
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First,

1 o 2 1 . . 2
— 2 — 071 O7 g & A
D 14(1 - T4V*2 ( 1§t,s§T’Ci,ts> - T4V*2 (Zlgt,ngZsz’i Qw,zQéJ‘ Zzsgr,ztgr,zs>
NT NT

Lo @) H-1 1) H-1 —1\1?
2 tr (Q;i Qz,i Qw,in‘,z’ Qz‘i’ Qz,i Qw,in‘,z’)]
NT *
1 B B AN 12
< V*NQT Aﬁlax (Qé,lewviQé,zl) max <Qg€z> tr (QE:'Z)):|
1 _ _
< *2 )‘1211ax (szleﬂszl) max <Q,(:z> ]
VNT 9 9
1
=—— 0, (K? =0p-(1).
O 7 O () = Or ()
where Qgel) 1Zt 1 VANA 1.&2. Second,
1 O
D z4b T4V*2 Z K:i,tslci,tllci,lqlci,qs
NT 717
1 RV U VR
< T4V*2 Z €T,isZz(3Qi€72~7itZitZ'L{tQiE%ilZilQiE%,iququZisgr,is
NT t#s1#q

1 AP 2) v A\ v
S gt (Q;?QZ-QQ?QiQSQQiQQQi)
VNT ’ ’ ’ ’

< g e (01) 0 (0) e 05102107

< V;VQT b (@) K (QE)) M (@21Qui22))

:Op*( _1) < oQ.

where Q; = Q] QuQz ;. It follows that D.Jj; = Op- (1) + Op+ (K1) = Op-+ (1). Similarly,
we can show that DJ}; < C < oo conditional on Wy7.H
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Appendix B: Proofs for Lemmas and Sketch Proofs for Section 4

This appendix provides the proofs of technical lemmas which are used in the proofs of the
main results in Section 3, gives assumptions and the sketch of proofs for main theorems in
Section 4.

C Proofs for lemmas

Proof for Lemma A.1. Let g() = (g1, - - - ,94) . Then g = (90, 8(2))" and

T
Z ztg (Tt))]

t=1

Nl

2
lell; =

I
1l
(]~

[2e2) (1) B (XuX},) g2) (7t) + 95 (70)]

)
5

96 (70)

B

1
T

el
E

~
—~

g (1) g (1) +

W
W

t=1

T T
1
:;92 [TZBK(Tt)BK(Tt 91+00 z_: 5 Tt Tt) 90

t=1

d

= 0161+ 6360 + o (1) = [|6]|* + 0 (1)
=1

by Assumption 1(v) and the fact that 7! Zthl BX (1) BX (1)) = Ix + 0 (K/T) (see Lemma
C.4.(1) in Dong and Linton (2018)). m

Proof for Lemma A.2. The proofs of (i) and (ii) are analogous to that of Lemma A.2(i)-
(ii) in Su, Wang and Jin (2018). The only difference is that we use Cosine functions as basis
function. One is readily to modify their proofs to obtain the above claims for our orthonormal
basis functions under the conditions stated in Assumption 1. m

Proof for Lemma A.3. We first prove (i). Recall that Z;; = (B_14, B ® X;;) and
Zit = Zit — Zl Write

T
1
Q:i = T ZZ{t w— 27 = Q“ - QZQZ), say. (A.1)
Let w = (wh, @l,..., @) = (w(’),w(z)’)/ with wy € RE! and w; € RX for I = 1,....,d,

and ||w| < C < co. Let g (7,m7) = wZBK (1) and go (1,0) = wéBf(l (7). Let go =

/
(90 (T7 ’WQ) ag./w(2)> ) where g0 = (gl (7-7 wl) v+ 9d (T’ wd))/‘
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First, we show that Amax (Qz,:) is bounded by some positive number uniformly in 7. By
Lemmas A.1 and A.3, we have that uniformly in ¢ and w,

w'QSZw:}i[gm % = ZE[gw (m) X (140, (1)) = 1ol

t=1

Then the largest eigenvalue of QSZ) and thus @;; is bounded above by some positive number
¢: uniformly in i with probability 1 — o(N~1).

Second, we prove that Apmin (Qz;) is bounded away from zero uniformly in i¢. By Lemma
A2, w'ij —[E3T g (1) X2 = [A2T | gw (1) EXit)2 (14 0(1)) uniformly in i and

- -2
w. By Cauchy-Schwarz inequality, we have [% Zthl g (1) EXy)? < %Zthl HEXit X

LT s (7)|* < Cllw||* < oo uniformly in i and @ because of %31 |lgw (7)]* =
|@||* (14 0(1)) (see the proof of Lemma A.1. Tt follows that

T T
1 -
@ Qziw =7 ;—1 E {[gw () Xt } E_ e

We want to show that 4; > C'[|w||® for some positive constant. Recall that ul (Tt =
For any 7 € [0,1], let ©; (1) =Var(Xy) = Z; (1) — wi () pi (7)" and fi; (7 X =

1 - - 1 (1) ~ ( 0d><1

2
+op(l)=Aiw+o0,(1).

=, (1) = E(XuX]),) = _ ,and Q; (1) Var
i (7) pi () Ei(7)
Then we have

O4x1 € (

Aim = /01 g (1) 8 (1) g (1) d7 — {/01 8w (7)) i (1) dT} +o0(1)

For the first term, we have

1 O(p_ _ Op_
AL :/ g o (1) (1) goe (Ndr =o' [~ HTDE=D e @-
0 Ouxx(k—1) Jo (Qi(r) @ B(1)B(r))dr

Let p; (1) = (B (1) ® p; (1))" and H(C) (1) fo w; (7) dr. Define

fol B_i(r)B_1 (1) dr fol By (7) /‘z@ (1) dr

]:BZZ C C C
Sl @ Boy () dr [l () @l (r) dr
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Then for the second term, we have A
follows that

5,21)7 = w’IB%iw. Since fol B_1 (T) B_1 (T)ldT = IK—l; it

AL 4 4@
L Iict Jo By () i (r dr _
Jo )y Boy (7Y dr ) il (7)1 (1) dr + ) (4 () @ B(r) B(r)) dr

Tr_ O(p_
— /Dy, K—1 (K—1)xdK =
Ourx(x-1) Dy;

Ig_1 0 1 ' >
where Dlz’ = c s DOi = f (QZ (7’) ® B (T) B (T) ) dr + DOiy
( — [y 1 () By (1) dr Ik ) °

and

1 1
Doi= [ w010 (s~ [l 0 B ar [ By )9 ('t
0o - 0
Noting that Dy; D}, = I, we have A( ) + A(Q) > Amin (Do;) @' D1 D} ;t0 =Amin (Doi) HWHQ
A(l) + Agz)ﬂzAmm (DO’L) w Dlz :)\min (D()z) ||WH2

1
> Nun (Dor) ]2 4+ oain [ /O (% (1) ® B(r) B(r))) df} o2

by Weyl inequality. Noting that

1 1
Amin [/0 (QZ (1)® B (1) B (1) ) dT:| = inf /0 vec (C) (Q, (1)® B (1) B (1) ) vec (C) dr

IC||=1,CeRIxK

= inf /1 B(r)' C'Q; () CB (1) dr

ICl=1Jo

1
> Amin (€ (T))/O tr [B (r) C'CB (T)] dr

1
= i (4 (7)) [C”C ( /0 B(r)B (ﬂ’m)]
— Auin (% (7)) 2 (C'C)
= [|C11* Amnin (2 (7)) = Amin (% (7)) > min [Amin (€2; (7))]

we are left to show that Dy; is semi-positive definite (s.p.d.). Define
1 —1
uh () = / ul (r) By (7)' dr { / B, () df} B_y ()
’ 0

20



Clearly, by the fact that fol B_1 (1) B_1 (1) dr = Ix_1, we have
1
W) = [ () By (0 B (7).
1 1 1 1
/ 1, (7) ) (r) dr = / 1) (7) B_y (1) dr < / B_1(t)B_, (7)’d7> / B_y(r) pl® (r) dr
0 ’ ’ 0 0 0
1 1
= / 1 (r) B_y (1) dr / B_y (1) 9 () dr.
0 0

Observing that

1 1 1 1
/O 1 () Hgf;(f)’dfz /0 19 (1) B_y (7)) dr /D B_y (1) i (r) dr = /0 Hgf;(f)ugf;m’df

we can write Dy; as

1 '
Do = [ [ 7)) (0] [ () = i) ()]
Clearly, Dy; is s.p.d. and Amin (DOi) > 0.

(ii) The proof of (ii) is much simpler than that of (i). It is omitted here.

(iii)-(iv) The proofs of (iii) and (iv) are analogous to that of (i) and thus are omitted. We
can replace X;; by 04X, or €4X;; and apply Assumption 1(vi) in place of Assumption (v).
Noting that Var(e;;X;;) =Var(o4X;¢). Assumption 1(v) and moment conditions on £;;X;; are
suffice to the proof of (v). m

Proof for Lemma A.4. Since the proofs for (i)-(ii) are similar, we only show (i). Note
that ﬁ sz\il ZtT 1 S,it = ﬁ va 1 ZtT 1 (rpae + Xz/trﬂ it)2 < % Zf\; Zthl Xét’"ﬁdtrﬁvitXit +
NT i1 Sote1 T S SUPrefo) 7 (T) + subrqoy s (DI wp iy iy 1 Xael® = O (K72)
+0, (K72F) Op (1) = O, (K2%) by Assumption 3 in Newey (1997). =

Proof for Lemma A.5. (i) First, we have

N T T , N T
NT NT2 Z ZZIC’L ts0is zt NT2 Z Z’Cz‘%ttaﬁt = VNT,I — VNT,Q; say.
i=1 t=1 s=1 i=1 t=1
For V7,1, we have

T

N T
2
Viry = W;;thr< Q21 QuiQz) 215 21,0 2Q5 1 QuiQs | 2y Ziyer?)

N
= S (Qui:10 0110001003
=1

<2K max M (Qui) max PN (Q 1) max A2, (Qi‘;))

—2KCZU cw—O( )

=z

o1



by Lemma A.3, the repeatedly use of the rotation property of trace operator and two in-
equalities: (i) tr(A4) < nApax (A) for any n x n symmetric positive definite matrix A and (ii)
Amax (BC) < Amax (B) Amax (C) for any symmetric p.s.d matrices B and C. For V72, we
have
g N T
Virz = 5 O 9t (Q5 QuaiQe ) Zu Q5 QuaQs ) Zu Ziyorl )

i=1 t=1

N T
- 2 L.
< maX )‘fnax (Qz,zl) mlax )\?nax (wai) NT2 § § tr (ZitZZ{tthZtazt)

~+

i=1 t=1
2[4+ 0p (1)] o= || 2
< Z1& G p ZZ‘Zﬁ U4t
NT? i=1 t=1 Z
_CK? 1 N E
=7 NT;;AMUM_ KQ/T)_OP(K)

2
where we use the fact that il < 2KA; in the last inequality. It follows that Vyr =

Op (K) +Op (KQ/T) = 0p (K).
(if) Note that Kis = Z4Q5 tQuiQ3 ) ZiMyy Zis < Ny (Q;}) S ()
uniformly in i and ¢. Similarly, K; ; > A2, (Q_ ) min (Quw,i)

min 2,0

2

.2 )
Zit Zit

< Eues? \

Z 5;20 Zit

o

Zit uniformly

in ¢ and ¢. It follows Byr < ﬁ Zi=1 thl ‘ Z 0% =0, (KNl/Z) .

D The sketch of proofs for main results in Section 4

In this section, we give some additional assumptions for the tests for stability of heterogeneous
coefficients and for homogeneity of time-varying coefficients. Since the proofs for Theorems 4.3
and 4.1 are similar to that of Theorem 3.1, we provide the sketch of the proofs.

D.1 Test for the stability of heterogeneous coefficients

To start, we first study the behavior of 4 under Hgy ... By the definition of ,Bpﬂ', we still
have we have Bpﬂ- = 3; under Hgy ., and

Bi = Bi = wvr (XIMy X)) XIM g + (XM, X)) ™' XIM, 6

= YNTBA: + YNTVAGT + Vi Ts
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where Ba; = vt (B (XM, Xi)) ™ E(XIM,ga4), vair = Bair—0ai with Bair = (XIM,,. Xi)
X X!M,,.gn; and v p = (X!M,, X;)"" X!M,,&;. Then

~ / v /
it = (eit — Xjpviw) + i + yNrdaae — YNt Xjvair and (A1)
Uy = & + aitr + YNTIA: — INTXiVAi,T (A.2)
- / — - = \/ / —1 / v
where & = eit — Xjyvir, & = (Gir, .- &ir) = i — Xy (X{M,, Xi) ™ X{M,r€i5 Gait = gait —

X&BA@ and ga; = (§7A,i1, e 7§A,iT)/~

Now we give the sketch of the proof of Theorem 4.1.

The Sketch of proof for Theorem 4.1. We only give the sketch proof for (ii) because
(i) can be seen as a special case of (ii) with yx7 = 0. Using (A.2), we can decompose I'y7 as
follows

6
Z (& +NTdn: — INTXivair) Ki (8 +ynTdni — INTXivair) = Z FS{;Zp say

T =
NT = N3
=1
where
F( T2 Zz | €Ki, FS\%)T = ’YNT Z —19A z’ngAu ngzf = VNT Zz 1 VAZ rXiKiXivair,

(4) 2 (56) 72 (6) 727
FNT = JJJTVE Zz 1€iKign, Ty = N’;%T Zizl R Xivair, DUnp = 37" Z “19a iXivaaT.

With the decomposition, we have

s ~ 11/2
oo NY2TTyp —BY, ( it S Nv2rr) B, - IBEVT> Vil
11/2 T1/2 11/2 ~11/2

VNT s=2 %,NT/1 VNT VNé’

where JJT\,T = (Nl/le“g\l,)T IB%E\,T)/VH/2 We can complete the proof by showing that (i)
Thp 5 N(O 1); (i) NV2TTG /P = a4 0, (1), where ®a = plimy 7)o Pa, N7 With
PANT = 772 SN A arwits (iil) NI/QTF /V}f\%g =o,(1)fors=3,...,6; (iv) IE%J][VT—IBJ][VT =
0 (KY/2); (v) Viyr/ Vi = 14 0, (1),

First, it is straightforward to show (i), (ii), (iv) and (v) by modifying the corresponding
proofs for Theorem 3.1. For (iii), following the proof of (iii) in Theorem 3.1, we can show

that T = 0, (v3r) = 0p(KY/2/(NV2T)), T} = nrOp(VE/(NT)) = 0p(KY/?/(NV2T)),

5 6
10} = ynr 0, (VE(NT))op (1) = 0p(KY2/(NY2T)), and T'C). = 0, (v%1) = 0,(KY/2/(NY2T)).
|
Proof of Corollary 4.2. We can follow the proof of Theorem 3.2 to show the corollary.
The details are omitted here. m

D.2 Test the homogeneity of time-varying coefficients

We first study the behavior of u4;; and §;; under the local alternative. There exist H% € RaIxL
and H(} € RE~! such that 3y (-) ~ H%BL (1) and fo(+) = H(}’BEI (). Let git = go,it +YNTIA,it,
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where go i+ = X/,00 (1¢)+ fo (7). Given ZZ% (B_lt, (Xit ® BtL)/)/, denote g, i = go’it—Zﬁ'HO,

/ . A . _
where I = (HO’,vec(H%’)> . Let Syy = SN ZMZE Mawr = S;L 50N, ZFgas, Tla =

1 .
[E(S32)] SiL E <ZiL/gAﬂ'>’ Rgyi = (rgoits- -+ 7gour) and ga; = (g1, .-, gar)’. Then
we have
N N
lpp —T1° =5, > ZYRgei + ynrTla + nr [HA,NT - HA} +S,, >zl
i=1 i=1

= Rgo.NT + YNTHA + YNTVIA NT + VI NT,
here Ry nr = S}, 32y ZF Ryy.i = [T y7 — IIa and = 5L SN Zle; et
WRCTE f1gg NT = O, 2 1i=1 #i *lgo,i> VIIA,NT = HANT A ANA VL NT = 955 2 j=1 44 &i- 1€
o LI o .
Jn,it = 9nit — Zi' A and U N7 = YNTVIA NT + VI, NT- We can write
N — . o\ ZL/ HO R ﬁ o
git — Git = (go,zt + ’YNTQA,zt) it + gy NT +YNTUA + VL NT
Liy70 LI L Lty
= (g90,it — Zif'11°) + N1 (98,0t — ZifTIA) — Zif' Rgo NT — Zi{ VL.NT
L v Lty
= (rgo,it — Zif' Rgo,NT) + YNTIAit — Zif VL NT

= o L1y
= Tgo,it T INTIAit — Zi{ VLNT

o L B v v / v v v /
where Tgo,z't = Tgo,z't - Zit Rgo,NT- Let Rgo,i = (7"9071‘1, e 77'go,iT) and gA,i = (gA,ila e 79A,iT> .
Then we have
N o . Lv
Uit = Ei¢ + O + Tgg it T YNTIA it — Zi VL NT and (A-3)
~ v = Ly
U; = €; + it +YNTGA: + Rgoi — Z;' VL NT- (A4)

To establish the asymptotic distribution of j]iVT, we need the following assumptions.
Assumption 3*. (i) f(-) and By, (:) for I = 1,...,d are all continuously differentiable up
to k-th order for some x > 0; (ii) For each i, Ag; () for [ = 1,...,d, and Ag;(-) are all
continuously differentiable up to k-th order for some x > 0.

Assumption 4. As (N,T) — oo, ®a = plim(y 7)o Pa N7 > 0 under Hyp 4y
Assumption 5. As (N,T) — oo, L — oo, L?/T — 0, and K/L — 0.

Now we give the sketch for the proof of Theorem 4.3.

Sketch of Proof for Theorem 4.3. We only give the sketch proof for (ii) since (i) can
be seen as special case of (ii) with yy7 = 0. Using (A.4) and FNT = N1T2 valﬁglCifLi, we

have Dy = Y219, Ty, where FE?T =~z i ik, Ty = 35 S, 0 Kidiaa, Ty =
ﬁ Zz]\il 90, MK Rgom 5\% = NT2 Zz UL NTZ 'Ki ZLVL NT, Fg\?)T = 2131%5 Zi:l elign.i,
Fg\%“ = NT2 Zz 1 € Ryom 5\2“ = NT2 Zz 151/C Zlvr N, FE\%“ = 2NT2 i= 1§A ikCi Ryo,u
T = =200 SN G K ZEvn v, and TWY = 522 SN Ryy iKiZEvp vr. Then Jk, can be
decomposed as follows

i 10 () gt R\ yil2

i NY2TTnr — By _ (J]{[T NS NVPTTR | By IBBNT> Vi
~11/2 11/2 11/2 ~11/2°

VT s=2 VnT VT VT
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We complete the proof by showing that: (i) J}VT = (Nl/QTI‘g\l,z[ - IB%%VT)/VII/z d — N (0,1);
(ii) TGy = NYV2TT0, )V = ®a + 0, (1), where ®a = plimy 7)_oo ®a N7 With & N7 =

s 1/2 . i
NT2 Zl 10X Wit (iii) J](V% = N1/2TFNT/Vi N =o0p(1) for s =3,...,10; (iv) IB%;FVT - ]B%}*LVT =

op(K'/?); (v) V:z[\/T/VNT =140, (1).
First, we can show that (i), (ii), (iv) and (v) in the proof of Theorem 3.1. Second, we can
follow the proofs of (iii) for Theorem 3.1 to show that I‘(?’)T =0, (L) = p(Vil/Q/(Nl/QT))

IO = 0p (V37)+0p (L (NT)) = 0p (VR /(NV2T)), TGy = Oy (ynr /KT (NT)) = 0, (Vi /(NV/2T)),
6 _ 1/2
I = O)(L " VE/INT) = opwfv/ /<N1/2T>>1 IV = Op(VETNT)) [op (1vr)+0p(/I/INT)) =
op (VR [(NV2T)), T = 0y (anrL ™) = 0p (VG /(NV2T)), Ty = 0, (43i7) + Op(onvr/I/(NT)) =
1/2 10 _ 1/2
op (VN2 /(NV2T)), T\ = 0, (L) [0, (vwvr) + Op(VIJ(NT)) = 0p(VR}? /(NV/2T)). m
Proof for Corollary 4.4. We can follow the proof of Theorem 3.2 to show the corollary.
The details are omitted here. m

E Additional simulation results

In this section, we present the testing results for the two tests discussed in Section 4.

First, we test the stability of heterogeneous coefficients and intercepts for DGPs 1-7. DGPs
1 and 3 are for size study, and other 5 DGPs are for power comparison. Under the null
hypothesis Hjy, we use the simple OLS to estimate the heterogenous slopes and intercepts.
In the construction of testing statistic, we consider the cosine functions as basis and the same
numbers of sieve terms K7, Ko, K3 and K, as in Section 5. We also report the bootstrap p-
value, where the null hypothesis of constant slopes and intercepts are imposed in the bootstrap
world. Different combinations of sample sizes are used: T = 25,50,100 and N = 25,50. For
each combination of sample sizes, the number of replications is 500 times. In bootstrap, we
consider 400 resamples for size studies and 300 resamples for power comparisons. Table 3
reports the testing results for the stability test.

Second, we test the homogeneity of TVCs in DGPs 1-5. DGPs 1-2 are for size study and
DGPs 3-5 are for power comparison. Although DGPs 6-7 have homogeneous coefficients, we do
not report the testing results because their coefficient functions are not continuous. Under the
null Hy, o, we also adopt the cosine functions as basis functions in the estimation of homogeneous
time-varying coefficients. The numbers of basis functions in the sieve approximation of 3 (-)
and f(-) are both L = LZ(NT)1/5J. In the construction of testing statistic, we consider
the same numbers of sieve terms K, Ko, K3 and K., as in Section 5. We also report the
bootstrap p-value, where the null hypothesis of common TVCs are imposed in the bootstrap
world. Different combinations of sample sizes are used: T = 25,50,100 and N = 25,50. For
each combination of sample sizes, the number of replications is 500 times. In bootstrap, we
consider 400 resamples for size studies and 300 resamples for power comparisons. The testing
results are reported in Table 4.
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Table 3: Simulation results for stability test

K, Ko K3 Ko
DGP T N | 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 25 25 | 0.014 0.080 0.150 0.140 0.056 0.098 | 0.020 0.090 0.154 | 0.014 0.084 0.154
50 | 0.008 0.0602 0.146 0.004 0.064 0.132 | 0.018 0.072 0.138 | 0.008 0.062 0.146
50 25 | 0.018 0.050 0.108 0.012 0.062 0.122 | 0.010 0.060 0.122 | 0.020 0.056 0.114
50 | 0.006 0.052 0.118 0.010 0.074 0.154 | 0.016 0.084 0.140 | 0.006 0.052 0.118
100 25 | 0.006 0.056 0.134 0.010 0.060 0.150 | 0.016 0.080 0.128 | 0.020 0.066 0.108
50 | 0.022 0.076 0.134 0.014 0.068 0.130 | 0.016 0.058 0.126 | 0.014 0.060 0.114
2 25 25 | 0.884 0.972 0.988 0.308 0.588 0.748 | 0.064 0.196 0.348 | 0.884 0.972 0.988
50 | 0.968 0.996 1.000 0.532 0.776 0.880 | 0.096 0.296 0.456 | 0.968 0.996 1.000
50 25 | 1.000 1.000 1.000 0.992 1.000 1.000 | 0.932 0.984 0.996 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 0.992 0.996 0.996 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
3 25 25 | 0.020 0.068 0.120 0.016 0.960 0.172 | 0.012 0.088 0.136 | 0.020 0.072 0.124
50 | 0.012 0.068 0.0128 | 0.012 0.072 0.152 | 0.012 0.048 0.108 | 0.012 0.068 0.128
50 25 | 0.008 0.060 0.140 0.028 0.080 0.120 | 0.020 0.092 0.148 | 0.012 0.068 0.152
50 | 0.004 0.048 0.112 0.012 0.052 0.148 | 0.008 0.064 0.116 | 0.004 0.048 0.112
100 25 | 0.004 0.064 0.136 0.000 0.032 0.080 | 0.000 0.020 0.104 | 0.012 0.048 0.108
50 | 0.008 0.052 0.092 0.020 0.056 0.120 | 0.020 0.092 0.120 | 0.012 0.056 0.108
4 25 25 | 0.876 0.956 0.988 0.496 0.716 0.840 | 0.104 0.252 0.404 | 0.884 0.964 0.992
50 | 0.996 1.000 1.000 0.780 0.948 0.972 | 0.232 0.464 0.652 | 0.996 1.000 1.000
50 25 | 1.000 1.000 1.000 0.992 1.000 1.000 | 0.984 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 0.996 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
5 25 25 | 1.000 1.000 1.000 0.860 0.944 0.968 | 0.232 0.488 0.632 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 0.964 0.996 0.996 | 0.364 0.664 0.788 | 1.000 1.000 1.000
50 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 0.996 0.996 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
6 25 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 0.804 0.932 0.960 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 0.928 0.988 0.996 | 1.000 1.000 1.000
50 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
7 25 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 0.768 0.892 0.960 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 0.912 0.964 0.988 | 1.000 1.000 1.000
50 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000

Note: 1. 1. Ko = LCTIMJ, C =1,2,3, K., refers to the number by LOOCV;

2. DGPs 1 and 3 are for size study and all the other DGPs are for power comparison.
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Table 4: Simulation results for homogeneity test
K, Ky K3 K.
DGp T N | 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 25 25 | 0.000 0.026 0.840 | 0.002 0.034 0.072 | 0.008 0.040 0.092 | 0.000 0.260 0.840
50 | 0.008 0.062 0.114 | 0.010 0.056 0.102 | 0.006 0.0520 0.122 | 0.008 0.062 0.114
50 25 | 0.006 0.042 0.112 | 0.008 0.060 0.132 | 0.012 0.042 0.102 | 0.008 0.042 0.112
50 | 0.009 0.052 0.110 | 0.012 0.050 0.110 | 0.010 0.048 0.100 | 0.008 0.052 0.110
100 25 | 0.012 0.048 0.118 | 0.010 0.048 0.136 | 0.012 0.058 0.116 | 0.010 0.058 0.124
50 | 0.008 0.034 0.090 | 0.002 0.040 0.082 | 0.008 0.042 0.078 | 0.006 0.040 0.092
2 25 25 | 0.000 0.030 0.082 | 0.002 0.036 0.072 | 0.008 0.038 0.094 | 0.000 0.030 0.082
50 | 0.010 0.062 0.106 | 0.010 0.054 0.098 | 0.006 0.050 0.126 | 0.010 0.062 0.106
50 25 | 0.006 0.048 0.116 | 0.010 0.052 0.128 | 0.012 0.044 0.102 | 0.008 0.048 0.116
50 | 0.008 0.052 0.112 | 0.010 0.048 0.110 | 0.010 0.054 0.096 | 0.008 0.052 0.112
100 25 | 0.010 0.048 0.118 | 0.010 0.048 0.132 | 0.012 0.050 0.112 | 0.010 0.056 0.124
50 | 0.060 0.036 0.092 | 0.004 0.042 0.084 | 0.006 0.040 0.078 | 0.006 0.038 0.090
3 25 25 | 0.108 0.316 0.444 | 0.076 0.216 0.324 | 0.028 0.116 0.240 | 0.108 0.316 0.444
50 | 0.172 0.430 0.620 | 0.088 0.256 0.424 | 0.048 0.168 0.276 | 0.172 0.432 0.620
50 25 | 0.492 0.728 0.856 | 0.320 0.576 0.732 | 0.236 0.484 0.636 | 0.492 0.728 0.856
50 | 0.764 0.932 0.964 | 0.604 0.848 0.932 | 0.456 0.720 0.868 | 0.764 0.932 0.964
100 25 | 0.872 0.960 0.988 | 0.824 0.940 0.976 | 0.752 0.912 0.960 | 0.892 0.980 0.988
50 | 1.000 1.000 1.000 | 0.984 1.000 1.000 | 0.964 1.000 1.000 | 1.000 1.000 1.000
4 25 25 | 0.272 0.556 0.692 | 0.132 0.300 0.444 | 0.048 0.176  0.268 | 0.272 0.556 0.692
50 | 0.584 0.836 0.932 | 0.336 0.568 0.752 | 0.104 0.316 0.472 | 0.584 0.836 0.932
50 25 | 0.900 0.976 0.992 | 0.808 0.952 0.984 | 0.664 0.884 0.940 | 0.900 0.976 0.992
50 | 0.998 1.000 1.000 | 0.980 1.000 1.000 | 0.940 0.988 1.000 | 0.996 1.000 1.000
100 25 | 0.992 0.996 1.000 | 0.988 0.996 1.000 | 0.984  0.996 1.000 | 0.996 1.000 1.000
50 | 1.000  1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
5 25 25 | 1.000  1.000 1.000 | 0.996 1.000 1.000 | 0.912 0.972 0.984 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 0.988  0.996 1.000 | 1.000 1.000 1.000
50 25 | 1.000  1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
100 25 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
50 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000 | 1.000 1.000 1.000
Note: 1. Ko = [CTl/GJ ,C =1,2,3, K.refers to the number chose by LOOCV;

2. DGP 1-2 are for size study and DGPs 3-5 are for power comparison.
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